全文约 3036 字,预计阅读时长: 9分钟
什么是LRU Cache
LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。
什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM, 通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术。 广义上的Cache指的是位于速度相差较大的两种硬件之间, 用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache, 内存与硬盘之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache── 称为Internet临时文件夹或网络内容缓存等。
Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。
LRU Cache的实现
实现LRU Cache的方法和思路很多,但是要保持高效实现O(1)的put和get,那么使用双向链表和哈希表的搭配是最高效和经典的。使用双向链表是因为双向链表可以实现任意位置O(1)的插入和删除,使用哈希表是因为哈希表的增删查改也是O(1)。
- 如果单纯的使用哈希和链表,那么调整顺序时,有可能更新的数据在链表的中部或偏后部。因此,找到key,就要找到 key 对应存储在 list中的位置。
list.splice
迭代器转移:转移到list 的哪个迭代器的位置,在哪个list中转移,转移哪个迭代器。此种情况迭代器不会失效。- 区分哈希 iterator 的second 、 list 的 iterator 存的是
pair<k,v>*
。
代码
- 如何更新到头部?
list.splice
迭代器转移。
class LRUCache {
public:
LRUCache(int capacity)
:_capacity(capacity)
{
}
int get(int key)
{
auto ret = _HashMap.find(key);
if(ret != _HashMap.end())
{
//在也要更新key在链表中的位置
Ltiter it = ret->second; //链表的迭代器
//使用list splice转移节点 防止 erase+push_front 时迭代器失效
_LRUlist.splice(_LRUlist.begin(),_LRUlist,it);
return it->second;
}
else
{
return -1;
}
}
void put(int key, int value)
{
auto ret = _HashMap.find(key);
//不在 新增
if(ret == _HashMap.end())
{
//如果满了 删除链表尾部 的 迭代器
if(_capacity == _HashMap.size())
{
pair<int,int> back1 = _LRUlist.back();
_HashMap.erase(back1.first);
_LRUlist.pop_back();
}
_LRUlist.push_front(make_pair(key,value)); //头插
_HashMap[key]=_LRUlist.begin(); //哈希插入key值对应的 链表的迭代器
}
else //在,更新value 同时放到链表的头部
{
Ltiter it = ret->second;
it->second = value;
_LRUlist.splice(_LRUlist.begin(),_LRUlist,it);
}
}
private:
typedef list<pair<int,int>>::iterator Ltiter;
unordered_map<int,Ltiter> _HashMap;
list<pair<int,int>> _LRUlist;
size_t _capacity;
};
- 如果key对应的值存在,则 list 取出 该节点,这里就可以看出 hashmap 的 value 存的是list 的 iterator的好处:找到 key 也就找到 key 存的值在 list 中的 iterator,也就直接删除,再进行头插,实现O(1)的数据挪动。