杨辉三角、组合、二项式定理

杨辉三角:

其构成: 从第三行还是每一个数字等于其上方的数字加上其左上方的数字。

其规律: 第 n 行第 m 个数字等于 C n m C_n^m Cnm。这是为什么呢?

(PS:因为 C n m = C n − 1 m + C n − 1 m − 1 C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1} Cnm=Cn1m+Cn1m1,可以发现这个式子与杨辉三角的构成规律不谋而合,这便是二者的联系。)

二项定理:

( x + y ) n = C n 0 y n + C n 1 x y n − 1 + … … + C n n x n (x+y)^n = C_n^0y^n+C_n^1xy^{n-1}+……+C_n^nx^n (x+y)n=Cn0yn+Cn1xyn1++Cnnxn

由上式可得:

  • 当 x=1,y=1 时有 C n 0 + C n 1 + … … + C n n = 2 n C_n^0+C_n^1+……+C_n^n=2^n Cn0+Cn1++Cnn=2n; (*)
  • 当 x=1,y=-1 时有 C n 0 ( − 1 ) n + C n 1 ( − 1 ) n − 1 + … … + C n n = 0 C_n^0{(-1)}^n+C_n^1{(-1)}^{n-1}+……+C_n^n=0 Cn0(1)n+Cn1(1)n1++Cnn=0
下面通过枚举子集的思想解释(*)式,其背景可以是从 n 个物品中拿 m 个,可以有两种角度:
  • 从整体考虑:将选0个、1个、……、n个的各自方案数加在一起,即 C n 0 + C n 1 + … … + C n n C_n^0+C_n^1+……+C_n^n Cn0+Cn1++Cnn
  • 从个体考虑:任意一个物品都有选或不选两种情况,所以总共的情况等于 2*2*……*2,即 2 n 2^n 2n

(PS:上述既是解释,也是二项式定理和组合的联系。)

(PS:上述既是解释,也是二项式定理和组合的联系。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Drdajie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值