杨辉三角:

其构成: 从第三行还是每一个数字等于其上方的数字加上其左上方的数字。
其规律: 第 n 行第 m 个数字等于 C n m C_n^m Cnm。这是为什么呢?
(PS:因为 C n m = C n − 1 m + C n − 1 m − 1 C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1} Cnm=Cn−1m+Cn−1m−1,可以发现这个式子与杨辉三角的构成规律不谋而合,这便是二者的联系。)
二项定理:
( x + y ) n = C n 0 y n + C n 1 x y n − 1 + … … + C n n x n (x+y)^n = C_n^0y^n+C_n^1xy^{n-1}+……+C_n^nx^n (x+y)n=Cn0yn+Cn1xyn−1+……+Cnnxn
由上式可得:
- 当 x=1,y=1 时有 C n 0 + C n 1 + … … + C n n = 2 n C_n^0+C_n^1+……+C_n^n=2^n Cn0+Cn1+……+Cnn=2n; (*)
- 当 x=1,y=-1 时有 C n 0 ( − 1 ) n + C n 1 ( − 1 ) n − 1 + … … + C n n = 0 C_n^0{(-1)}^n+C_n^1{(-1)}^{n-1}+……+C_n^n=0 Cn0(−1)n+Cn1(−1)n−1+……+Cnn=0
下面通过枚举子集的思想解释(*)式,其背景可以是从 n 个物品中拿 m 个,可以有两种角度:
- 从整体考虑:将选0个、1个、……、n个的各自方案数加在一起,即 C n 0 + C n 1 + … … + C n n C_n^0+C_n^1+……+C_n^n Cn0+Cn1+……+Cnn
- 从个体考虑:任意一个物品都有选或不选两种情况,所以总共的情况等于 2*2*……*2,即 2 n 2^n 2n
(PS:上述既是解释,也是二项式定理和组合的联系。)
(PS:上述既是解释,也是二项式定理和组合的联系。)