华为OD机试 -分糖果(Python)

题目描述

小明从糖果盒中随意抓一把糖果,每次小明会取出一半的糖果分给同学们。

当糖果不能平均分配时,小明可以选择从糖果盒中(假设盒中糖果足够)取出一个糖果或放回一个糖果。

小明最少需要多少次(取出、放回和平均分配均记一次),能将手中糖果分至只剩一颗。

输入描述

抓取的糖果数(<10000000000):15

输出描述

最少分至一颗糖果的次数:5

用例

输入

15

输出

5

说明

15+1=16;
16/2=8;
8/2=4;
4/2=2;
2/2=1;

代码

def min_steps_to_one(candies
### 华为OD糖果问题的Python解题思路 #### 问题描述 小明从糖果盒中随意取一定数量的糖果,每次可以执行三种操作之一:取出一半糖果并舍去余数;如果当前糖果数目为奇数,则可以从盒子中再拿一个糖果或将手里的一个糖果放回去。目标是最少经过几次这样的操作能够使手中的糖果变为一颗。 为了达到这个目的,采用贪心策略来解决问题[^3]。具体来说,在每一步都尽可能快速地减少糖果的数量直到只剩下一颗为止。当遇到奇数个糖果时,优先考虑加一而不是减一,因为这样可以在下一轮更有效地通过除以2的方式大量削减糖果总数。 #### 贪婪算法析 对于任意正整数n表示初始糖果数: - 如果 n 是偶数,则直接将其除以2; - 若 n 为奇数,则判断 (n+1)/2 和 (n−1)/2 的大小关系,选择较小的那个作为下一步的结果,这是因为我们希望更快接近1。 这种做法基于这样一个事实——当我们面对两个连续的奇数值时,较大的那个总是可以通过增加1变成一个小得多的新值(即其半数),而较小的一个则需要两次操作才能完成同样的效果(先减后除)[^4]。 #### Python代码实现 下面给出了解决上述问题的具体Python程序: ```python def min_steps_to_one(n): steps = 0 while n != 1: if n % 2 == 0: n //= 2 elif ((n + 1) // 2) < ((n - 1) // 2): n += 1 else: n -= 1 steps += 1 return steps if __name__ == "__main__": candy_count = int(input().strip()) print(min_steps_to_one(candy_count)) ``` 此函数接收一个参数`n`代表起始的糖果数量,并返回将这些糖果减少到只有一个所需的最小步数。主程序部读入用户输入的数据并调用该方法打印最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codereasy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值