最短路径(五)—最短路径算法对比分析

前几节我们针对图的最短路径,依依分析描述了各个算法。


Floyd-Warshall算法http://blog.csdn.net/wtyvhreal/article/details/43315705

Dijkstra算法http://blog.csdn.net/wtyvhreal/article/details/43447497

Bellman-Ford算法http://blog.csdn.net/wtyvhreal/article/details/43450727

Bellman-Ford队列优化http://blog.csdn.net/wtyvhreal/article/details/43453151



Floyd算法:

时间复杂度高,可以解决负权边,并且均摊在每一点对上,在所有算法中还是属于较优的。较小的编码复杂度也是优势,如果要求是所有点之间的最短路径,或者如果数据范围较小,Floyd算法比较适合。


Dijkstra算法:

无法解决负权边的图,但有良好的可扩展性,时间复杂度低,堆优化后的Dijkstra的时间复杂度可以达到O(MlogN)。


Bellman-Ford算法:

可以解决负权边的图,可以判断是否有负权回路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值