更多资料获取
📚 个人网站:ipengtao.com
在日常工作和生活中,我们往往会遇到许多重复性的任务,这不仅浪费时间,还降低了效率。幸运的是,Python作为一门强大而灵活的编程语言,可以帮助我们自动化这些重复任务,从而解放双手,提高工作效率。本文将介绍实用的Python自动化脚本,涵盖了文件操作、数据处理、网络爬虫等多个领域,通过详细的内容和丰富的示例代码,帮助读者更好地理解和运用这些脚本。
文件操作
1 批量重命名文件
有时需要批量重命名一组文件,可以使用Python的os
模块和正则表达式来实现:
import os
import re
def batch_rename_files(folder_path, pattern, replacement):
for filename in os.listdir(folder_path):
new_filename = re.sub(pattern, replacement, filename)
os.rename(os.path.join(folder_path, filename), os.path.join(folder_path, new_filename))
# 示例:将所有文件中的"_old"替换为"_new"
batch_rename_files('/path/to/files', r'_old', '_new')
2 查找最大文件
查找文件夹中占用空间最大的文件,可以使用os.path.getsize
函数:
import os
def find_largest_file(folder_path):
largest_file = max((os.path.join(folder_path, filename) for filename in os.listdir(folder_path)),
key=os.path.getsize)
return largest_file
# 示例:查找目录中最大的文件
largest_file_path = find_largest_file('/path/to/files')
print(f"The largest file is: {
largest_file_path}")
数据处理
1 CSV文件处理
处理CSV文件是日常工作中常见的任务,使用pandas
库可以简化这个过程:
import pandas as pd
def process_csv(input_path, output_path):
df = pd.read_csv(input_path)
# 进行数据处理,这里只是个示例
df['new_column'] = df['old_column'] * 2
df.to_csv(output_path, index=False)
# 示例:处理CSV文件
process_csv('/path/to/input.csv', '/path/to/output.csv')
2 数据库操作
与数据库交互时,使用sqlite3
库可以轻松执行SQL查询:
import sqlite3
def execute_sql_query(database_path, query):
connection = sqlite3.connect(database_path)
cursor = connection.cursor()
cursor.execute(query)
result = cursor.fetchall()
connection.close()
return result
# 示例:执行SQL查询<