Python自动化脚本高效应对重复工作

更多资料获取

📚 个人网站:ipengtao.com


在日常工作和生活中,我们往往会遇到许多重复性的任务,这不仅浪费时间,还降低了效率。幸运的是,Python作为一门强大而灵活的编程语言,可以帮助我们自动化这些重复任务,从而解放双手,提高工作效率。本文将介绍实用的Python自动化脚本,涵盖了文件操作、数据处理、网络爬虫等多个领域,通过详细的内容和丰富的示例代码,帮助读者更好地理解和运用这些脚本。

文件操作

1 批量重命名文件

有时需要批量重命名一组文件,可以使用Python的os模块和正则表达式来实现:

import os
import re

def batch_rename_files(folder_path, pattern, replacement):
    for filename in os.listdir(folder_path):
        new_filename = re.sub(pattern, replacement, filename)
        os.rename(os.path.join(folder_path, filename), os.path.join(folder_path, new_filename))

# 示例:将所有文件中的"_old"替换为"_new"
batch_rename_files('/path/to/files', r'_old', '_new')

2 查找最大文件

查找文件夹中占用空间最大的文件,可以使用os.path.getsize函数:

import os

def find_largest_file(folder_path):
    largest_file = max((os.path.join(folder_path, filename) for filename in os.listdir(folder_path)),
                       key=os.path.getsize)
    return largest_file

# 示例:查找目录中最大的文件
largest_file_path = find_largest_file('/path/to/files')
print(f"The largest file is: {
     largest_file_path}")

数据处理

1 CSV文件处理

处理CSV文件是日常工作中常见的任务,使用pandas库可以简化这个过程:

import pandas as pd

def process_csv(input_path, output_path):
    df = pd.read_csv(input_path)
    # 进行数据处理,这里只是个示例
    df['new_column'] = df['old_column'] * 2
    df.to_csv(output_path, index=False)

# 示例:处理CSV文件
process_csv('/path/to/input.csv', '/path/to/output.csv')

2 数据库操作

与数据库交互时,使用sqlite3库可以轻松执行SQL查询:

import sqlite3

def execute_sql_query(database_path, query):
    connection = sqlite3.connect(database_path)
    cursor = connection.cursor()
    cursor.execute(query)
    result = cursor.fetchall()
    connection.close()
    return result

# 示例:执行SQL查询<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值