更多资料获取
📚 个人网站:ipengtao.com
大家好,今天为大家分享一个超强的 Python 库 - statsmodels。
Github地址:https://github.com/statsmodels/statsmodels
Python statsmodels是一个强大的统计分析库,提供了丰富的统计模型和数据处理功能,可用于数据分析、预测建模等多个领域。本文将介绍statsmodels库的安装、特性、基本功能、高级功能、实际应用场景等方面。
安装
安装statsmodels库非常简单,可以使用pip命令进行安装:
pip install statsmodels
安装完成后,可以开始使用statsmodels库进行数据分析和统计建模。
特性
- 提供了多种统计模型:包括线性回归、时间序列分析、广义线性模型等多种统计模型。
- 数据探索和可视化:提供了丰富的数据探索和可视化工具,如散点图、箱线图、直方图等。
- 假设检验和统计推断:支持各种假设检验和统计推断,如t检验、方差分析等。
基本功能
1. 线性回归分析
Python statsmodels库可以进行线性回归分析,通过最小二乘法拟合数据,得到回归系数和模型评估指标。
import statsmodels.api as sm
import numpy as np
# 构造数据
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
# 添加常数项
X = sm.add_constant(x)
# 拟合线性回归模型
model = sm.OLS(y, X)
results = model.fit()
# 打印回归系数和模型评估指标
print(results.summary())
2. 时间序列分析
Python statsmodels库支持时间序列分析,包括ADF检验、ARIMA模型等功能,可用于时间序列数据的预测和建模。
import pandas as pd
import statsmodels.api as sm
# 构造时间序列数据
dates = pd.date_range('2020-01-01'