Description
小Q的妈妈是一个出纳,经常需要做一些统计报表的工作。今天是妈妈的生日,小Q希望可以帮妈妈分担一些工作,作为她的生日礼物之一。经过仔细观察,小Q发现统计一张报表实际上是维护一个可能为负数的整数数列,并且进行一些查询操作。在最开始的时候,有一个长度为N的整数序列,并且有以下三种操作: INSERT i k 在原数列的第i个元素后面添加一个新元素k; 如果原数列的第i个元素已经添加了若干元素,则添加在这些元素的最后(见下面的例子) MIN_GAP 查询相邻两个元素的之间差值(绝对值)的最小值 MIN_SORT_GAP 查询所有元素中最接近的两个元素的差值(绝对值) 例如一开始的序列为 5 3 1 执行操作INSERT 2 9将得到: 5 3 9 1 此时MIN_GAP为2,MIN_SORT_GAP为2。 再执行操作INSERT 2 6将得到: 5 3 9 6 1 注意这个时候原序列的第2个元素后面已经添加了一个9,此时添加的6应加在9的后面。这个时候MIN_GAP为2,MIN_SORT_GAP为1。于是小Q写了一个程序,使得程序可以自动完成这些操作,但是他发现对于一些大的报表他的程序运行得很慢,你能帮助他改进程序么?
Input
第一行包含两个整数N,M,分别表示原数列的长度以及操作的次数。第二行为N个整数,为初始序列。接下来的M行每行一个操作,即“INSERT i k”,“MIN_GAP”,“MIN_SORT_GAP”中的一种(无多余空格或者空行)。
Output
对于每一个“MIN_GAP”和“MIN_SORT_GAP”命令,输出一行答案即可。
Sample Input
3 5
5 3 1
INSERT 2 9
MIN_SORT_GAP
INSERT 2 6
MIN_GAP
MIN_SORT_GAP
5 3 1
INSERT 2 9
MIN_SORT_GAP
INSERT 2 6
MIN_GAP
MIN_SORT_GAP
Sample Output
2
2
1
2
1
HINT
N , M ≤500000 对于所有的数据,序列内的整数不超过5*10^8。
Source
分析:
这题有两种询问:
1.询问相邻两个数的差值的最小值
2.询问排序后相邻两个数的差值的最小值
这道题比较简单的一点就是,我们的询问都是整个队列的信息,所以我们就可以整个队列一起考虑
这道题涉及到了两种数据结构:
splay和树状数组
我们先看插入操作:
我们为了方便插入,需要在最开始的时候设置一个前驱和后继
在具体插入的过程中,我们需要记录一下每个结点插入了多少元素
每次插入元素的时候(比如说在第x位置插入y元素),
我们需要找到1~x位置都插入了多少元素,简单来说就是需要快速计算插入结点数的前缀和,最简单的数据结构就是树状数组在第x处插入z的时候,我们找到在该元素前的元素个数
因为所有结点中包含一个前驱,所以我们在splay的时候需要把 (pos+1) splay到根上(包括一个前驱+所有在ta之前的结点数)
void insert(int x,int z)
{
int pos=getsum(x); //该元素前的元素个数
splay(get_kth(pos+1),0);
splay(get_kth(pos+2),root);
int now=++top;
pre[now]=ch[root][1]; ch[ch[root][1]][0]=top;
key[now]=z;
rval[now]=lval[now]=z;
minv[now]=INF;
sz[now]=1;
update(ch[root][1]);
update(root);
push(z);
}
询问一:
这个询问我们用splay维护:
精髓就在于update
void update(int bh)
{
if (!bh) return;
sz[bh]=sz[ch[bh][0]]+sz[ch[bh][1]]+1;
lval[bh]=lval[ch[bh][0]];
rval[bh]=rval[ch[bh][1]];
minv[bh]=INF;
if (ch[bh][0]&&ch[bh][0]!=1&&ch[bh][0]!=2)
{
minv[bh]=min(abs(key[bh]-rval[ch[bh][0]]),minv[ch[bh][0]]);
lval[bh]=lval[ch[bh][0]];
}
else lval[bh]=key[bh];
if (ch[bh][1]&&ch[bh][1]!=1&&ch[bh][1]!=2)
{
minv[bh]=min(minv[bh],min(abs(key[bh]-lval[ch[bh][1]]),minv[ch[bh][1]]));
rval[bh]=rval[ch[bh][1]];
}
else rval[bh]=key[bh];
}
lval:维护该结点前驱的最大值
rval:维护该结点后继的最小值
minv:整个序列的相邻元素最小差值
询问二:
我们用set维护整个序列排序后的最小差值
void push(int z)
{
if (min_sort_gap==0) return;
set<int>::iterator num;
num=S.lower_bound(z);
if (num!=S.end())
if (abs(*num-z)<min_sort_gap)
min_sort_gap=abs(*num-z);
if (num!=S.begin())
{
num--;
if (abs(*num-z)<min_sort_gap)
min_sort_gap=abs(*num-z);
}
S.insert(z);
}
tip
练码力
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;
const int N=1000010;
const int INF=1e9;
int n,m,min_sort_gap;
int rval[N],lval[N],tree[N]; //tree是树状数组
int minv[N],sz[N],pre[N],ch[N][2],cnt[N],a[N],root,key[N];
int top;
struct node{
int x,y,sum;
};
node t[N<<2];
set<int> S;
int get(int bh)
{
return ch[pre[bh]][0]==bh? 0:1;
}
int getsum(int x) //前缀和
{
int sum=0;
for (int i=x;i>0;i-=(i&(-i)))
sum+=tree[x];
return sum;
}
void add(int x,int val)
{
for (int i=x;i<=n;i+=(i&(-i)))
tree[x]+=val;
}
void update(int bh)
{
if (!bh) return;
sz[bh]=sz[ch[bh][0]]+sz[ch[bh][1]]+1;
lval[bh]=lval[ch[bh][0]];
rval[bh]=rval[ch[bh][1]];
minv[bh]=INF;
if (ch[bh][0]&&ch[bh][0]!=1&&ch[bh][0]!=2) //1是所有序列前驱,2是所有序列后继
{
minv[bh]=min(abs(key[bh]-rval[ch[bh][0]]),minv[ch[bh][0]]);
lval[bh]=lval[ch[bh][0]];
}
else lval[bh]=key[bh];
if (ch[bh][1]&&ch[bh][1]!=1&&ch[bh][1]!=2)
{
minv[bh]=min(minv[bh],min(abs(key[bh]-lval[ch[bh][1]]),minv[ch[bh][1]]));
rval[bh]=rval[ch[bh][1]];
}
else rval[bh]=key[bh];
}
void push(int z)
{
if (min_sort_gap==0) return;
set<int>::iterator num;
num=S.lower_bound(z);
if (num!=S.end())
if (abs(*num-z)<min_sort_gap)
min_sort_gap=abs(*num-z);
if (num!=S.begin())
{
num--;
if (abs(*num-z)<min_sort_gap)
min_sort_gap=abs(*num-z);
}
S.insert(z);
}
void rotate(int bh)
{
int fa=pre[bh];
int grand=pre[fa];
int wh=get(bh);
ch[fa][wh]=ch[bh][wh^1];
pre[ch[fa][wh]]=fa;
ch[bh][wh^1]=fa;
pre[fa]=bh;
pre[bh]=grand;
if (grand) ch[grand][ch[grand][0]==fa? 0:1]=bh;
update(fa);
update(bh);
}
void splay(int bh,int mb)
{
for (int fa;(fa=pre[bh])!=mb;rotate(bh))
if (pre[fa]!=mb)
rotate(get(bh)==get(fa)? fa:bh);
if (!mb) root=bh;
}
int get_kth(int k) //排名
{
int now=root;
while (1)
{
if (sz[ch[now][0]]>=k) now=ch[now][0];
else
{
int tmp=(ch[now][0]? sz[ch[now][0]]:0);
tmp++;
if (tmp>=k) return now;
k-=tmp;
now=ch[now][1];
}
}
}
void insert(int x,int z)
{
int pos=getsum(x);
splay(get_kth(pos+1),0);
splay(get_kth(pos+2),root);
int now=++top;
pre[now]=ch[root][1]; ch[now][0]=ch[now][1]=0; ch[ch[root][1]][0]=top;
key[now]=z;
rval[now]=lval[now]=z;
minv[now]=INF;
sz[now]=1;
update(ch[root][1]);
update(root);
push(z);
}
int main()
{
scanf("%d%d",&n,&m);
S.clear();
memset(tree,0,sizeof(tree)); //树状数组
min_sort_gap=INF;
root=top=0;
ch[root][0]=ch[root][1]=pre[root]=minv[root]=sz[root]=0;
//前驱
int now=++top; root=top;
pre[now]=ch[now][0]=ch[now][1]=0;
key[now]=-1;
rval[now]=lval[now]=-1;
minv[now]=INF;
sz[now]=1;
//后继
now=++top;
pre[now]=root; ch[now][0]=ch[now][1]=0;
ch[root][1]=top;
key[now]=-1;
rval[now]=lval[now]=-1;
minv[now]=INF;
sz[now]=1;
update(ch[root][1]);
update(root);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
insert(i,a[i]); //在第i个位置插入a[i]
add(i,1); //第i个位置插入了多少元素
}
char s[20];
for (int i=1;i<=m;i++)
{
scanf("%s",s);
int x,y,z;
if (s[0]=='I')
{
scanf("%d%d",&x,&y);
insert(x,y);
add(x,1);
}
else if (s[4]=='S')
printf("%d\n",min_sort_gap);
else printf("%d\n",minv[root]);
}
return 0;
}