【堆+平衡树】BZOJ1058(ZJOI2007)[报表统计]题解

14 篇文章 0 订阅
11 篇文章 0 订阅

题目概述

维护一个可能为负数的整数数列。在最开始的时候,有一个长度为 n 的整数序列,并且有以下三种操作:

INSERT i k :在原数列的第 i 个元素后面添加一个新元素 k ; 如果原数列的第 i 个元素已经添加了若干元素,则添加在这些元素的最后。

MIN_GAP :查询相邻两个元素之间的差值(绝对值)的最小值。

MIN_SORT_GAP :查询所有元素中最接近的两个元素的差值(绝对值) 。

解题报告

可以认为插入操作是挂链的形式。然后用堆维护相邻两个元素的差值的最小值,再用平衡树维护前驱和后继来求最接近的两个元素的差值。STL大法好……

示例程序

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<vector>
#include<set>
#define fr first
#define sc second
#define mp make_pair
using namespace std;
typedef pair<int, pair<int,int> > data;
const int maxn=500000,maxm=500000;

int n,m,a[maxn+5],MS;vector<int> v[maxn+5];
set<int> s;set<int>::iterator it;
int si;data Heap[maxn+2*maxm+5];

#define Abs(x) ((x)<0?-(x):(x))
inline bool cmp(data a,data b) {return a.fr>b.fr;}
inline int Pre(int i,int j) {int a=i,b=j-1;if (b<0) a--,b=v[a].size()-1;return Abs(v[i][j]-v[a][b]);}
inline void Push(int i,int j) {Heap[++si]=mp(Pre(i,j),mp(i,j));push_heap(Heap+1,Heap+1+si,cmp);}
inline int Top()
{
    while (Heap[1].fr!=Pre(Heap[1].sc.fr,Heap[1].sc.sc)) pop_heap(Heap+1,Heap+1+si--,cmp);
    return Heap[1].fr;
}
inline void Insert(int i,int x)
{
    it=s.lower_bound(x);if (it!=s.end()) MS=min(MS,*it-x);if (it!=s.begin()) it--,MS=min(MS,x-*it);
    v[i].push_back(x);s.insert(x);Push(i,v[i].size()-1);if (v[i+1].size()) Push(i+1,0);
}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    scanf("%d%d",&n,&m);MS=2e9;
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    v[1].push_back(a[1]);s.insert(a[1]);
    for (int i=2;i<=n;i++) Insert(i,a[i]);
    for (char s[100];m;m--)
    {
        scanf("%s",s);int x,y;
        switch(s[4])
        {
            case 'R':scanf("%d%d",&x,&y);Insert(x,y);break;
            case 'G':printf("%d\n",Top());break;
            case 'S':printf("%d\n",MS);break;
        }
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值