【bzoj2694】Lcm 莫比乌斯反演

这道题目涉及到了LCM(最小公倍数)和莫比乌斯反演的结合,要求求和的过程中排除gcd(a, b)为n^2倍数的情况。通过分析发现,当gcd(a, b)含有相同质因数的三次方时,求和结果为0。若仅含有相同质因数的平方,则需特定条件下表达式才有非零值。通过对这些规律的深入理解和应用,可以解决这个问题。" 124279936,11740549,无人机企业数据防泄漏策略:深信达SDC沙盒系统,"['数据安全', '加密解密', '信息安全', '运维', '源码']
摘要由CSDN通过智能技术生成

题目大意:对于任意的>1的n gcd(a, b)不是n^2的倍数,的1到a和1到b的lcm(a,b)之和。
题解:又是一道变态题。。。。。。。。。。
可以参考同系列的上一篇文章,这题主要的特殊处在于不能出现gcd(a,b)为n^2倍数的lcm(a,b),通过一顿瞎搞我们发现最后要求的前缀和中多出了一个abs(u(D/i)),这还是一个积性函数,唯一不同的是i中包含prime[j]的情况,这个我们就找规律,如果一个数中包含三个一样的因子的话无论如何两个u中一定有一个包含两个一样的因子,那么表达式为0,所以出现这种情况的话最后一定为0。如果只有两个一样的因子的时候我们可以看出只有当两个u中各包含一个该因子的时候表达式才有值,再通过这个瞎推一下就行了。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<ctime>
#include<cmath>
#include<cstring>
#include<strin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值