bzoj4032 [HEOI2015]最短不公共子串(字符串dp+SAM)

64 篇文章 0 订阅
33 篇文章 0 订阅

题目链接

分析:
字符串dp四合一
比较神的一道题,一开始只会搞第一问
然而发现自己的方法不是很靠谱

First.A子串≠B子串

实际上就是求两个串的最长公共子串
f[i][j] f [ i ] [ j ] 表示A序列第 i i 位与B序列第j位匹配,得到的最长公共子串
f[i][j]=f[i1][j1]+1(A[i]=B[j]) f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + 1 ( A [ i ] = B [ j ] )
答案就是所有的最长公共子串中的最小值+1

其中有一点要注意:

if (a!=i) ans=min(ans,a+1);

a a 记录的最长公共子串长度

为什么a!=i的时候,才能更新答案呢?

因为 a==i a == i ,就说明 A A 序列1i位都能够匹配上,
那么得到的答案可能值 a+1 a + 1 就有可能没有意义了
(有可能A和B序列完全相等,正确答案应该是-1)

Second.A子串≠B子序列

贪心(真是book思议)
枚举序列A的匹配起点,贪心的匹配B序列
我们也可以用dp完成
f[i][j] f [ i ] [ j ] 表示A序列第 i i 位与B序列第j位匹配
转移的时候只有一点小变化:
f[i][j]=f[i1][j1]+1(A[i]=B[j]) f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + 1 ( A [ i ] = B [ j ] )
f[i][j]=f[i][j1](A[i]!=B[j]) f [ i ] [ j ] = f [ i ] [ j − 1 ] ( A [ i ] ! = B [ j ] )

为什么不相等的时候要这么转移呢?
我们枚举的 i i 的A的子串起始点
子串一定是连续的,因此要保证i一定要得到匹配,所以 i i 不能动

还是注意:

if (a!=i) ans=min(ans,a+1);

Third.A子序列≠B子串

用B串建立SAM
设计状态: l[i] l [ i ] 表示用 SAM S A M 中的结点 i i 匹配A序列能够得到的最短长度
我们枚举A的每一位i SAM S A M 中的每一个结点 j j
如果有ch[j][i]这个结点,说明能够匹配的上,因此 l[ch[j][i]]=min(l[j]+1) l [ c h [ j ] [ i ] ] = m i n ( l [ j ] + 1 )
最后答案就是 min(l[i]+1) m i n ( l [ i ] + 1 )

Fourth.A子序列≠B子序列

和第三问差不多
但是因为两者都是子序列,所以我们需要预先处理一个数组 c c
c[i][j]表示B序列中第 i i 位之前字符j的最近位置

我们还是利用贪心的思想
l[i] l [ i ] 表示匹配到字符串B第 i i 位的最短长度
枚举A的每一位i倒序枚举B的每一位 j j (注意我们构造c数组的意义)
如果有 c[j][A[i]] c [ j ] [ A [ i ] ] 这个结点,说明 j j 之前有一个位置能够与A[i]匹配,因此: l[c[j][A[i]]=min(l[j]+1) l [ c [ j ] [ A [ i ] ] = m i n ( l [ j ] + 1 )

tip

天大的坑:if (a!=i) ans=min(ans,a+1);

看到dalao们都跪吉利添动力,所以也来一发

#include<cstdio>
#include<cstring>
#include<iostream>

using namespace std;

const int INF=1e9;
const int N=4005;
int dis[N],ch[N][26],fa[N],last=1,root=1,sz=1,len;
int f[2003][2003],l[N],l1,l2,c[N][26],mp[26];
char s[N],ss[N];

void insert(int x)
{
    int now=++sz,pre=last;
    last=now;
    dis[now]=dis[pre]+1;
    for (;pre&&!ch[pre][x];pre=fa[pre]) ch[pre][x]=now;

    if (!pre) fa[now]=root;
    else
    {
        int q=ch[pre][x];
        if (dis[q]==dis[pre]+1) fa[now]=q;
        else
        {
            int nows=++sz;
            dis[nows]=dis[pre]+1;
            memcpy(ch[nows],ch[q],sizeof(ch[q]));
            fa[nows]=fa[q]; fa[q]=fa[now]=nows;
            for (;pre&&ch[pre][x]==q;pre=fa[pre]) ch[pre][x]=nows;
        }
    }
}

void solve1()
{
    memset(f,0,sizeof(f));
    int ans=INF;
    for (int i=1;i<=l1;i++)
    {
        int a=0;
        for (int j=1;j<=l2;j++)
        {
            if (s[i]==ss[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            a=max(a,f[i][j]);
        }
        if (a!=i) ans=min(ans,a+1);    //a!=i 
    }       
    if (ans>l1||ans>l2) printf("-1\n");
    else printf("%d\n",ans);
}

void solve2()
{
    memset(f,0,sizeof(f));
    int ans=INF;
    for (int i=1;i<=l1;i++)   //枚举起点 
    {
        int a=0;
        for (int j=1;j<=l2;j++)
        {
            if (s[i]==ss[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            else f[i][j]=f[i][j-1];
            a=max(a,f[i][j]);
        }
        if (a!=i) ans=min(ans,a+1);
    }
    if (ans>l1||ans>l2) printf("-1\n");
    else printf("%d\n",ans);
}

void solve3()
{
    memset(l,0x33,sizeof(l));
    l[1]=0;
    int ans=INF;
    for (int i=1;i<=l1;i++)
        for (int j=1;j<=sz;j++)
        {
            int t=ch[j][s[i]-'a'];
            if (!t) ans=min(ans,l[j]+1);
            else l[t]=min(l[t],l[j]+1);
            //l表示的是用a的子序列去匹配后缀自动机中的结点,到结点i能得到的最短长度   
        }
    if (ans>l1||ans>l2) printf("-1\n");
    else printf("%d\n",ans);
}

void solve4()
{
    memset(l,0x33,sizeof(l));
    l[0]=0;
    int ans=INF;
    for (int i=l2;i>=0;i--)
    {
        for (int j=0;j<26;j++)
            if (mp[j]) c[i][j]=mp[j];
        mp[ss[i]-'a']=i;
    }
    for (int i=1;i<=l1;i++)
        for (int j=l2;j>=0;j--)
        {
            int t=c[j][s[i]-'a'];
            if (!t) ans=min(ans,l[j]+1);
            else l[t]=min(l[t],l[j]+1);
        }
    if (ans>l1||ans>l2) printf("-1\n");
    else printf("%d\n",ans);
}

int main()
{
    scanf("%s",s+1); 
    scanf("%s",ss+1);  len=strlen(ss+1);
    for (int i=1;i<=len;i++) insert(ss[i]-'a');
    l1=strlen(s+1); l2=strlen(ss+1);
    solve1();
    solve2();
    solve3();
    solve4();
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿,如果它的两个儿都被遍历过了,那么我们就可以计算出从它的左儿到它的右儿的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值