bzoj3524 [Poi2014]Couriers(主席树)

本文介绍如何使用主席树解决区间众数查询问题。给定一个长度为n的序列,进行m次区间查询,判断是否存在一个数在指定区间内出现次数超过区间长度的一半。若存在,则输出该数;否则输出0。通过构建主席树实现高效的区间查询。
摘要由CSDN通过智能技术生成

Description

给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6

Sample Output

1
0
3
0
4

HINT

【数据范围】

n,m≤500000

Source

[ Submit][ Status][ Discuss]


分析:
显然主席树
如果一个数在区间内出现了超过一半的次数
那么从小到大排序后,在区间正中间位置的数一定就是所求
但是也存在无解的情况

所以我们先区间查找到第 (rl+1)/2 ( r − l + 1 ) / 2
之后判断这个数在区间内出现的次数是否大于 (rl+1)/2 ( r − l + 1 ) / 2

一开始我很天真的以为,我们可以在查找第k大的时候就计算出这个数的出现次数
但是我们在查找第k大的时候只能确定值,
这个第k大有可能是区间最大的数,也有可能是取件最小的数

总而言之,我们必须在找到第k大之后
重新ask一下这个值在区间内的出现次数

tip

建立的是权值线段树
因此在线段树查找的过程,可以视为是对答案的一个二分
l==r l == r 时, l l 即为答案

询问第k大的时候:

int tmp=t[t[y].l].sum-t[t[x].l].sum;

不要记错了

主席树空间:nlogn

#include<cstdio>
#include<cstring>
#include<iostream>

using namespace std;

const int N=500005;
int root[N],a[N],n,m,top=0;
struct node{
    int sum,l,r;
};
node t[N*20];

void insert(int &now,int l,int r,int x)
{
    top++;
    t[top]=t[now];
    now=top;
    t[now].sum++;
    if (l==r) return;
    int mid=(l+r)>>1;
    if (x<=mid) insert(t[now].l,l,mid,x);
    else insert(t[now].r,mid+1,r,x);
}

int ask(int x,int y,int l,int r,int k)      //返回第k大 
{
    if (l==r) return l;
    int tmp=t[t[y].l].sum-t[t[x].l].sum;
    int mid=(l+r)>>1;
    if (tmp>=k) return ask(t[x].l,t[y].l,l,mid,k);
    else return ask(t[x].r,t[y].r,mid+1,r,k-tmp);
}

int point(int x,int y,int l,int r,int z)
{
    if (l==r) return t[y].sum-t[x].sum;
    int mid=(l+r)>>1;
    if (z<=mid) return point(t[x].l,t[y].l,l,mid,z);
    else return point(t[x].r,t[y].r,mid+1,r,z);
} 

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        root[i]=root[i-1];
        insert(root[i],1,n,a[i]);
    } 
    for (int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        int cnt=(y-x+1)/2;
        int z=ask(root[x-1],root[y],1,n,cnt+1);   //find cnt+1 
        int ans=point(root[x-1],root[y],1,n,z);
        if (ans>cnt) printf("%d\n",z);
        else printf("0\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值