bzoj4816 [Sdoi2017]数字表格(反演)

题目链接

Description

这里写图片描述

分析:

i=1nj=1mf(gcd(i,j)) ∏ i = 1 n ∏ j = 1 m f ( g c d ( i , j ) )

对于这种式子,一般我们会枚举gcd(每个f值要使用几次)
g(d)=ni=1mj=1[gcd(i,j)=d] g ( d ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ]

d=1min(n,m)f(d)g(d) ∏ d = 1 m i n ( n , m ) f ( d ) g ( d )

ni=1mj=1[gcd(i,j)=d] ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] 用反演化开

g(d)=k=1min(n/d,m/d)nkdmkdμ(k) g ( d ) = ∑ k = 1 m i n ( n / d , m / d ) n k d m k d μ ( k )

d=1min(n,m)f(d)k=1nkdmkdμ(k) ∏ d = 1 m i n ( n , m ) f ( d ) ∑ k = 1 n k d m k d μ ( k )

像我这种naive的选手,到这里就直接做了

继续,我们看看 g(d) g ( d ) 能不能进一步优化,设 T=kd T = k d

g(d)=k=1min(n/d,m/d)nkdmkdμ(k)=d|TnTmTμ(Td) g ( d ) = ∑ k = 1 m i n ( n / d , m / d ) n k d m k d μ ( k ) = ∑ d | T n T m T μ ( T d )

这样我们就可把 T T 的枚举拉出来

d=1min(n,m)f(d)d|TnTmTμ(Td)

d=1min(n,m)d|Tf(d)nTmTμ(Td) ∏ d = 1 m i n ( n , m ) ∏ d | T f ( d ) n T m T μ ( T d )

枚举顺序换一下

T=1min(n,m)d|Tf(d)nTmTμ(Td)=T=1min(n,m)(d|Tf(d)μ(Td))nTmT ∏ T = 1 m i n ( n , m ) ∏ d | T f ( d ) n T m T μ ( T d ) = ∏ T = 1 m i n ( n , m ) ( ∏ d | T f ( d ) μ ( T d ) ) n T m T

发现对于每个 T T d|Tf(d)μ(Td)的值是固定的,与 n n m无关,于是我们先用筛法预处理出每个 T T 对应的这个式子的值,前缀积一下
而外面这一层T=1min(n,m)()nTmT可以分块处理
所以时间复杂度: O((max(n,m)+T(n+m))logMOD) O ( ( m a x ( n , m ) + T ( n + m ) ) l o g M O D )

tip

d|Tf(d)μ(Td) ∏ d | T f ( d ) μ ( T d ) 直接暴力处理即可
sum s u m 为前缀积,注意 sum[0]=1 s u m [ 0 ] = 1

一开始预处理就慢到爆,怀疑人生
KSM次数多了也费时,所以我们预处理f的逆元,减少KSM的调用
因为要计算 f(d)μ(Td) f ( d ) μ ( T d ) ,而 μ μ <script type="math/tex" id="MathJax-Element-1569">μ</script>的取值只有-1,1,所以预处理f的逆元反而比较方便

多%防爆ll

还是免不了T掉了

ll改int,计算过程中强转ll

时间就少了一半诶

#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int N=1000000;
const ll p=1e9+7;
int sshu[N+5],tot=0,mu[N+5],n,m;
int f[N+5],sum[N+5],inv[N+5];
bool no[N+5];

inline int KSM(int a,int b) {
    int t=1;
    a%=p;
    while (b) {
        if (b&1) t=(1LL*t*a)%p;
        b>>=1;
        a=(1LL*a*a)%p;
    }
    return t%p;
}

void prepare() {    
    mu[1]=1;
    for (int i=2;i<=N;i++) {
        if (!no[i]) {
            sshu[++tot]=i;
            mu[i]=-1;
        }
        for (int j=1;j<=tot&&sshu[j]*i<=N;j++) {
            no[sshu[j]*i]=1;
            if (i%sshu[j]==0) {
                mu[sshu[j]*i]=0;
                break;
            }
            mu[sshu[j]*i]=-mu[i];
        }
    }

    f[0]=0; f[1]=1; 
    sum[0]=1; sum[1]=1;                               //前缀积
    inv[1]=1;                                         //f的逆元 
    for (int i=2;i<=N;i++) f[i]=(f[i-1]+f[i-2])%p,inv[i]=KSM(f[i],p-2),sum[i]=1;
    for (int i=1;i<=N;i++) 
        if (mu[i]!=0) {
            for (int j=1;j*i<=N;j++)                  // j*i=T i=T/d j=d
                if (mu[i]>0) sum[j*i]=(1LL*sum[j*i]*f[j])%p;
                else sum[j*i]=(1LL*sum[j*i]*inv[j])%p;
        }
    for (int i=2;i<=N;i++) sum[i]=(1LL*sum[i]*sum[i-1])%p; 
}

int main()
{
    prepare();
    int T;
    scanf("%d",&T);

    while (T--) {
        scanf("%d%d",&n,&m);
        int last,ans=1;
        for (int i=1;i<=min(n,m);i=last+1) {
            last=min(n/(n/i),m/(m/i));
            ans=1LL*ans%p*KSM(1LL*sum[last]*KSM(sum[i-1],p-2)%p,1LL*(n/i)*(m/i)%(p-1))%p;
        }
        printf("%d\n",ans%p);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值