BNUOJ 51279 组队活动(CDQ分治+FFT)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wu_tongtong/article/details/79797615

Description

BNU ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍来相互学习、共同进步,为了保证学习效率,每支队伍至多有m名队员,你需要计算出一共有多少种不同的组队方案。两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友。

Input

第一行是一个正整数T(T<=5),表示测试数据的组数,

对于每组测试数据,

输入只有一行,包含两个整数n(1<=n<=100000)、m(1<=m<=100000)。

Output

对于每组测试数据
输出一行,包含一个整数,表示不同的组队方案的个数,由于方案数可能很大,请对998244353(7*17*2^{23}+1)取模后输出。

Sample Input

2
5 2
20 3

Sample Output

26
721625882

分析:
肯定能看出是一个dp
但是这个问题不好设计状态(状压?区间?好像都不好)
所以我们就naive的设f[n]表示n个人的组队方案数

现在我们要考虑第n个人的组队情况
我们从剩下的n1个人中选择不超过m1个人与第n个人组成一队

f[n]=i=0m1f[ni1]C(n1,i)

f[n]=(n1)!i=0m1f[ni1](ni1)!1i!

f[n](n1)!=i=0m1f[ni1](ni1)!1i!

一个经典卷积形式,模数也符合FFT的条件
所以我们考虑用NTT优化

但是我们观察一下我们得到的式子:i=0m1f[ni1](ni1)!1i!卷出来得到的是f[n](n1)!
但是我们在卷积式子里用的都是f[i]i!
所以我们干脆维护f[i]i!
g[i]=f[i]i!,则有

g[n]=1ni=0m1g[ni1]1i

我们用卷积计算上式就很舒服了,最后答案就是g[n]n!

显然不能直接n次卷积,而g卷的是一个常量,所以考虑用CDQ分治优化

CDQ分治的基本思路就是:左区间影响右区间
那么已知[l,mid]的情况下,我们怎么计算ta对[mid+1,r]的贡献nei?

一个多项式为g[l],g[l+1],g[l+2],g[l+3],...,g[mid1],g[mid]
另一个多项式为a[0],a[1],a[2],...,a[rl]
我们乘起来就变成了——
b[0]=(g[l]a[0])

b[mid+1l]=(g[l]a[mid+1l]+g[l+1]a[mid+1l1]+...)=g[mid+1]

即,我们需要g[l]g[mid]中的每个数
同时需要a[0]a[rl]中的每个数

tip

卷完之后一定要注意下标
注意我们化出的式子:i=0m1g[ni1]1i,其中卷积的下标之和为n1

我们卷出来的b[mid+1l]应该对应着下标之和为mid+1的值

所以:for (int i=mid+1;i<=r;i++) f[i]=(f[i]+a[i-l-1]*inv[i])%p;

f[0]=1,CDQ(0,n)
(有时候需要把f[0]也带进去,这种问题只能视情况而定了)

NTT一定要写对了

for (k=0;k<m;k++,w=(w*wn)%p) {
    ll z=(a[j+k+m]*w)%p;
    a[j+k+m]=((a[j+k]-z)%p+p)%p;           //a[j+k]-z
    a[j+k]=(a[j+k]+z)%p;
} 
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long

using namespace std;

const ll p=998244353;
const int N=300010;
int n,m;
ll f[N],inv[N],inv_jc[N],jc[N],a[N],b[N];

ll KSM(ll a,ll b) {
    ll t=1;
    a%=p;
    while (b) {
        if (b&1) t=(t*a)%p;
        b>>=1;
        a=(a*a)%p;
    }
    return t%p;
}

void prepare() {
    jc[0]=1;
    for (int i=1;i<N;i++) jc[i]=((ll)i*jc[i-1])%p;
    inv[0]=1; inv[1]=1; 
    for (int i=2;i<N;i++) inv[i]=((p-p/i)*inv[p%i]%p)%p;
    inv_jc[0]=1; inv_jc[1]=1;
    for (int i=2;i<N;i++) inv_jc[i]=(inv[i]*inv_jc[i-1])%p;
}

void NTT(int n,ll *a,int opt) {
    int i,j=0,k;
    for (i=0;i<n;i++) {
        if (i>j) swap(a[i],a[j]);
        for (int l=n>>1;(j^=l)<l;l>>=1);
    }
    for (i=2;i<=n;i<<=1) {
        int m=i>>1;
        ll wn=KSM(3,(p-1)/i);
        for (j=0;j<n;j+=i) {
            ll w=1;
            for (k=0;k<m;k++,w=(w*wn)%p) {
                ll z=(a[j+k+m]*w)%p;
                a[j+k+m]=((a[j+k]-z)%p+p)%p;           //a[j+k]-z
                a[j+k]=(a[j+k]+z)%p;
            } 
        }
    }
    if (opt) reverse(a+1,a+n);
}

void CDQ(int l,int r) {
    if (l==r) return;
    int mid=(l+r)>>1;
    CDQ(l,mid);

    int fn=1;
    while (fn<=(r-l+1)*2) fn<<=1;
    for (int i=l;i<=mid;i++) a[i-l]=f[i];
    for (int i=mid-l+1;i<fn;i++) a[i]=0;
    for (int i=0;i<r-l+1;i++) {
        if (i<m) b[i]=inv_jc[i];                   //一个团队的人数不能超过m 
        else b[i]=0;
    }
    for (int i=r-l+1;i<fn;i++) b[i]=0;
    NTT(fn,a,0); NTT(fn,b,0);
    for (int i=0;i<fn;i++) a[i]=(a[i]*b[i])%p;
    NTT(fn,a,1);
    ll I=KSM(fn,p-2);
    for (int i=0;i<fn;i++) a[i]=(a[i]*I)%p;
    for (int i=mid+1;i<=r;i++) f[i]=(f[i]+a[i-l-1]*inv[i])%p;      //a[i-l-1]对应的才是f[i] 

    CDQ(mid+1,r);
}

int main()
{
    int T;
    scanf("%d",&T);
    prepare();
    while (T--) {
        scanf("%d%d",&n,&m);
        memset(f,0,sizeof(f));
        f[0]=1;                                     //f[0]=1;
        CDQ(0,n);
        printf("%lld\n",(f[n]*jc[n])%p);
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页