单源最短路径算法

Dijkstra

可以用优先队列优化到 O ( m l o g n ) O(mlogn) O(mlogn)的时间复杂度。

注意!Dijkstra算法只能处理正边权!负边权要用SPFA!

代码(优先队列优化):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct st
{
	int to;
	int dis;
	int nxt;
}
edge[500010];
int head[10010],size;
void add(int from,int to,int dis)
{
	edge[++size].nxt=head[from];
	edge[size].to=to;
	edge[size].dis=dis;
	head[from]=size;
}
void init()
{
	memset(head,-1,sizeof(head));
	memset(edge,-1,sizeof(edge));
}
struct node
{
	int dis,d;
	bool operator < (const node &x)const
	{
		return x.dis<dis;
	}
};
priority_queue<node> q;
int n,m,s;
int u,v,w;
int b[10010];
int dis[10010];
void dij()
{
	priority_queue<node> q;
	for(int i=1;i<=n;i++)
		dis[i]=(1<<31)-1;
	dis[s]=0;
	q.push((node){0,s});
	while(!q.empty())
	{
		node t=q.top();
		q.pop();
		u=t.d;
		if(b[u])
			continue;
		b[u]=1;
		for(int i=head[u];~i;i=edge[i].nxt)
		{
			v=edge[i].to,w=edge[i].dis;
			if(b[v])
				continue;
			if(dis[u]+w<dis[v])
			{
				dis[v]=dis[u]+w;
				q.push((node){dis[v],v});
			}
		}
	}
}
int main()
{
	init();
	scanf("%d%d%d",&n,&m,&s);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
	}
	dij();
	for(int i=1;i<=n;i++)
		printf("%d ",dis[i]);
	return 0;
}

SPFA

注意!SPFA可能会被卡到 O ( m n ) O(mn) O(mn)(网格图),在没有负边权的情况下尽量用Dijkstra!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct st
{
	int to;
	int dis;
	int nxt;
}
edge[500010];
int head[10010],size;
void add(int from,int to,int dis)
{
	edge[++size].nxt=head[from];
	edge[size].to=to;
	edge[size].dis=dis;
	head[from]=size;
}
void init()
{
	memset(head,-1,sizeof(head));
	memset(edge,-1,sizeof(edge));
}
int n,m,s;
int u,v,w;
int b[10010];
int dis[10010];
void spfa()
{
	queue<int> q;
	for(int i=1;i<=n;i++)
		dis[i]=(1<<31)-1;
	dis[s]=0;
	b[s]=1;
	q.push(s);
	while(!q.empty())
	{
		u=q.front();
		q.pop();
		b[u]=0;
		for(int i=head[u];~i;i=edge[i].nxt)
		{
			v=edge[i].to,w=edge[i].dis;
			if(dis[u]+w<dis[v])
			{
				dis[v]=dis[u]+w;
				if(!b[v])
				{
					q.push(v);
					b[v]=1;
				}
			}
		}
	}
}
int main()
{
	init();
	scanf("%d%d%d",&n,&m,&s);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
	}
	spfa();
	for(int i=1;i<=n;i++)
		printf("%d ",dis[i]);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值