题目
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
解答
由于要多次调用sumRegion函数,不能在函数里求和,因此需要求得每个位置为止的矩形区域的和,f(m,n)代表(0,0)到(m,n)位置位置的矩形区域的和,则有以下递推公式:
f(m, n) = matrix(m, n) + f(m-1, n) + f(m, n-1) - f(m-1, n-1)
在构造函数里完成这一递推步骤,而sumRegion函数中只需要常数时间就可得出结果。
class NumMatrix {
public:
vector<vector<int> > sums;
NumMatrix(vector<vector<int>> matrix) {
int m = matrix.size();
if (m != 0) {
int n = matrix[0].size();
sums = vector<vector<int> >(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
int val = matrix[i][j];
if (i == 0 && j > 0)
val += sums[0][j-1];
else if (j == 0 && i > 0)
val += sums[i-1][0];
else if (i > 0 && j > 0)
val += sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1];
sums[i][j] = val;
}
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
int res = 0;
if (row1 > 0 && col1 > 0)
res = sums[row2][col2] - sums[row2][col1-1] - sums[row1-1][col2] + sums[row1-1][col1-1];
else if (row1 == 0 && col1 > 0)
res = sums[row2][col2] - sums[row2][col1-1];
else if (row1 > 0 && col1 == 0)
res = sums[row2][col2] - sums[row1-1][col2];
else
res = sums[row2][col2];
return res;
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/