POJ 1639:Picnic Planning(最小度限制生成树)

原创 2012年04月18日 12:34:18
Picnic Planning
Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 7356   Accepted: 2555

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form 
Total miles driven: xxx 
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

Source



题意:一共有nv个人从家里出发要到目的地的“Park”,一个人可以开车去接另一个人,一辆车可载重无限,问这n个人到Park的总路程最小,此外,还有一个条件,Park处最多能挺s辆车,即Park的度数不能超过s,求最小生成树。

大概思路:设Park为标号0,其他地点为1,2...,n-1;先求出1~n-1的最小生成树,然后在枚举0结点度数d从1~s的情况,即向已生成的最小生成树插入边,当d>=2的时候,必然产生回路,因此求出回路中最大的边,进行判断是否替换……

源代码:(0Ms)
#include<iostream>
#include<cstring>
using namespace std;

const int MAX_NV = 21;
const int INF = 0x7f7f7f7f;

typedef struct Edge
{
	int sv,ev,w;
}Edge;

int nv;
char name[MAX_NV][12];
int gam[MAX_NV][MAX_NV];
Edge mstEdge[MAX_NV];
int s;
int ans;
bool isCycle;

int IndName(char ch[])
{
	int ind=0;
	while(ind<nv && strcmp(name[ind],ch)!=0)
		ind++;
	if(ind==nv)
		strcpy(name[nv++],ch);
	return ind;
}

int Prim()
{
	int res=0;
	int i,j,k;
	for(i=1;i<nv-1;i++)
	{
		mstEdge[i].sv = 1;
		mstEdge[i].ev = i+1;
		mstEdge[i].w = gam[1][i+1];
	}

	for(k=2;k<nv;k++)
	{
		int minw = mstEdge[k-1].w,ind = k-1;
		for(i=k;i<nv-1;i++)
			if(minw > mstEdge[i].w)
			{
				minw = mstEdge[i].w;  
				ind = i;
			}
		res += minw;
		
		Edge tmp = mstEdge[ind];	mstEdge[ind] = mstEdge[k-1]; mstEdge[k-1]=tmp;

		j = mstEdge[k-1].ev;

		for(i=k;i<nv-1;i++)
		{
			int v = mstEdge[i].ev,w = gam[j][v];
			if(mstEdge[i].w > w)
			{
				mstEdge[i].w = w;
				mstEdge[i].sv = j;
			}
		}		
	}

	return res;
}

void MaxWeightEdgeInCycle(int mv,int sv,int ev,int& maxw,int& ind)
{
	if(mv == ev)
	{
		isCycle = true;
		return;
	}

	for(int i=0;i<nv-1;i++)
	{
		if(mstEdge[i].sv != ev && mstEdge[i].ev != ev)
			continue;
		if(mstEdge[i].sv == ev && mstEdge[i].ev != sv)
		{
			MaxWeightEdgeInCycle(mv,ev,mstEdge[i].ev,maxw,ind);
			if(isCycle)
			{
				if(maxw<mstEdge[i].w && mstEdge[i].ev!=0)
				{
					maxw=mstEdge[i].w;
					ind=i;
				}
				break;
			}
		}
		else if(mstEdge[i].sv != sv && mstEdge[i].ev == ev)
		{
			MaxWeightEdgeInCycle(mv,ev,mstEdge[i].sv,maxw,ind);
			if(isCycle)
			{
				if(maxw<mstEdge[i].w && mstEdge[i].sv!=0)
				{
					maxw=mstEdge[i].w;
					ind=i;
				}
				break;
			}
		}
	}
}

void Solve()
{
	int i;
	bool exist[MAX_NV];
	ans = Prim();
	
	int minw = INF+1,ev = -1;
	for(i=1;i<nv;i++)
	{
		if(gam[0][i] < minw)
		{
			minw = gam[0][i];
			ev = i;
		}
		exist[i]=false;
	}

	ans += minw;
	
	exist[ev]=true;
	mstEdge[0].w=minw;	mstEdge[0].sv=0;	mstEdge[0].ev=ev;

	for(int d=2;d<=s;d++)
	{
		int dec = INF+1,edgeInd=-1;
		ev = -1;
		for(i=1;i<nv;i++)
		{
			if(exist[i]==true)
				continue;
			int maxw=0,ind=-1;
			isCycle = false;
			MaxWeightEdgeInCycle(0,0,i,maxw,ind);
			if(dec > gam[0][i]-maxw)
			{
				dec=gam[0][i]-maxw;
				edgeInd=ind;
				ev=i;
			}
		}
		if(dec>=0)
			break;
		else
		{
			
			mstEdge[edgeInd].sv=0;	mstEdge[edgeInd].ev=ev;	mstEdge[edgeInd].w=gam[0][ev];
			ans += dec;
			exist[ev]=true;
		}
	}
}

int main()
{
	int i;
	char name1[12],name2[12];
	int ne;
	strcpy(name[0],"Park");
	memset(gam,0x7f,sizeof(gam));
	while(scanf("%d",&ne)!=EOF)
	{
		nv = 1;
		int dis,ind1,ind2;
		for(i=0;i<ne;i++)
		{
			cin >> name1 >> name2 >> dis;
			ind1=IndName(name1);
			ind2=IndName(name2);
			gam[ind1][ind2] = gam[ind2][ind1] = dis;
		}
		
		cin >> s;

		Solve();
		printf("Total miles driven: %d\n",ans);
	}
	return 0;
}


数据结构基础系列(7):图

数据结构课程是计算机类专业的专业基础课程,在IT人才培养中,起着重要的作用。课程按照大学计算机类专业课程大纲的要求,安排教学内容,满足需要系统学习数据结构的人。系列课程包含11个部分,本课为第7部分“图”,介绍图的相关概念图的存储结构和基本运算,深度优先和广度优先的遍历以及最小生成树等其他运算。
  • 2015年10月28日 20:30

poj1639 Picnic Planning 限制顶点度数的MST

题意: 有n个兄弟去野餐,目的地为Park。每个人可以选择直接去Park,也可以选择去其他人家,和他一起坐车去Park。 每个人家的停车位没有限制,但是Park的停车数不能超过k。问所有人的最短路程。...
  • u011265346
  • u011265346
  • 2015-01-20 16:43:49
  • 712

poj_1639 Picnic Planning(度限制最小生成树)

Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10431   Accepted:...
  • christry_stool
  • christry_stool
  • 2017-02-07 00:40:13
  • 471

PKU1639解题报告

  • 2008年07月12日 22:05
  • 22KB
  • 下载

poj 1639 Picnic Planning 最小K度限制生成树

Picnic PlanningTime Limit: 5000MS Memory Limit: 10000KTotal Submissions: 5846 Accepted: 1934Descript...
  • kongming_acm
  • kongming_acm
  • 2011-03-26 21:11:00
  • 512

poj 1639 Picnic Planning(最小度限制生成树)

链接: http://poj.org/problem?id=1639 题目: Picnic Planning Time Limit: 5000MS   ...
  • shuangde800
  • shuangde800
  • 2012-10-04 12:27:47
  • 1713

POJ 1639 Picnic Planning 【最小度限制生成树】

原题链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11062 http://poj.org/problem?id=16...
  • qq_35205305
  • qq_35205305
  • 2016-06-22 20:48:36
  • 142

POJ 1639 Picnic Planning 最小度限制生成树

  • 2009年08月26日 19:30
  • 5KB
  • 下载

poj 1639 Picnic Planning(最小K度限制生成树)

hihoCoder挑战赛11来啦!有Tshirt作为奖品哦~ Language: Default Picnic Planning Time Limi...
  • u011699990
  • u011699990
  • 2015-05-12 23:04:21
  • 483

POJ 1639 Picnic Planning(初遇最小度限制生成树)

这是最小度限制生成树的经典问题,题意就不说了 题目链接:http://poj.org/problem?id=1639 一般都是1个顶点的度有限制k,如果每个顶点的度都有限制,那么当前是NP难的。 为了...
  • kalilili
  • kalilili
  • 2015-02-11 20:56:45
  • 691
收藏助手
不良信息举报
您举报文章:POJ 1639:Picnic Planning(最小度限制生成树)
举报原因:
原因补充:

(最多只允许输入30个字)