Pandas中的groupby

文章详细介绍了Pandas中GroupBy的功能,包括数据分组的三个步骤:splitting(拆分)、applying(应用)和combining(组合)。GroupBy可以按列分组,并对数据进行聚合操作,如aggregate、filter等。此外,文章还提到了pandas的函数式编程概念,涉及DataFrame、Series和elementwise层面的操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

groupby概述

GroupBy对象属性

groupby过程拆解

以groupby(by="company")为例:

三步走

1.Splitting

主要靠groupby

  • split index (rows)

  • split columns (rows)

语法糖:

df.groupby('A') is just syntactic sugar fordf.groupby(df['A'])

grouped=df.groupby(['A']);grouped_C=grouped['C'] is just syntactic sugar for df['C'].groupby(df['A'])

DataFrame column selection in GroupBy

2.Applying

操作类型分类

应用时的输入

  • 列(或行)

函数应用于整个列,输出每组的列为一个结果,应用于整个列

函数应用于整个列,输出每组的列为大小不变,应用于列中的单个元素

  • 整个分组

函数作为于整个分组,输出一个值,比如GroupBy.aggregate()或GroupBy.agg()

与操作类型或函数功能有关

相关函数

外加:groupBy.filter()

groupby的applying与pandas函数式编程

groupby的applying有3种类型:

pandas函数式编程有3种操作层次:DataFrame,Series(row-or column-wise),or elementwise

3.Combining

一般结果自动combining

group操作

显示分组效果

for name,group in grouped:
  print(name)
  print(group)
  print()

同时对多列进行运算

df['col3'] = df.apply(lambda x: x['col1'] +2 * x['col2'], axis=1)

删除大小为0的分组

dff.groupby('B').filter(lambda x: len(x) >0)

分组统计结果

print(grouped.apply(lambda x:x.describe()))

遍历各分组

import pandas as pd

if __name__ == "__main__":

    dict_list = [{"a":"A", "b":2}, {"a":"A", "b":4}, {"a":"B", "b":6}]

    df = pd.DataFrame(dict_list)
    print(">>>")
    print(df)
    print()

    grouped = df.groupby("a")

    for idx, group in grouped:
        print(">>>")
        print("idx: \n", idx)
        print("group: \n", group)
        print()

    # print(grouped.groups)
    # print(grouped.indices)
    # print(grouped.get_group("A"))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wugou2014

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值