前言
这些操作很少用到,但是看到也要看得懂,有时候用起来会方便些。
pandas中长表和宽表
长表和宽表的概念:
长表是某个特征的属性名作为一列
宽表式某个特征的属性值作为一列
长宽表只是数据呈现方式的差异,但其包含的信息量是等价的
举例如下:
pandas中pivot图解
对于一个基本的长宽变换操作而言,最重要的有三个要素,分别是变形后的行索引,需要转到列索引的列,以及这些列和行索引对应的数值,它们分别对应了pivot方法中的index,columns,values参数。新生成表的列索引是columns对应列的unique值,而新表的行索引是index对应列的unique值,而values对应了想要展示的数值列。
利用pivot进行变形操作需要满足唯一性的要求,即由于在新表中的行列索引对应了唯一的value。
pandas中pivot_table图解
pivot的使用依赖于唯一性条件,那如果不满足唯一性条件,那么必须通过聚合操作使得相同行列组合对应的多个值变为一个值。此时就无法通过pivot函数来完成。pandas中提供了pivot_table来实现,其中的aggfunc参数就是使用的聚合函数。
pandas中melt图解
df.melt()是df.pivot()逆转操作函数。简单说就是将指定的列铺开放到行上名为variable列,值在value列。
pandas中wide_to_long图解
宽表转长表:
pandas中crosstab图解
crosstab用于统计分组频率的特殊透视表,可以处理分类数据它可用于将两个或多个变量分组,并为每组的给定值执行计算。简单来说,就是将两个或者多个列中不重复的元素组成一个新的DataFrame,新数据的行列交叉的部分值为其组合在原始数据中的数量。
pandas中explode
explode函数能够对某一列的元素进行纵向的展开,被展开的单元格必须存储list,tuple
,series,np.ndarray等等。
举例如下:
文章详细介绍了Pandas库中用于数据转换的关键函数,包括pivot用于长宽表转换,pivot_table处理非唯一性数据,melt进行反向转换,wide_to_long宽表转长表,以及crosstab和explode函数在统计和展开列表数据时的应用。这些工具帮助数据分析师更有效地组织和分析数据。
258

被折叠的 条评论
为什么被折叠?



