Learning Driven Computation Offloading forAsymmetrically Informed Edge Computing(用于非对称信息边缘计算的学习驱动计算分流)
摘要
边缘计算是将计算能力下放到网络边缘,从而通过任务卸载改善用户体验的一个有前途的范例。如果可以事先知道所有任务的执行时间,用户可以完美地安排其任务在边缘服务器上执行。但是,在执行实际卸载之前,很难知道任务执行时间 (TET),这通常在不同的软件和硬件配置的边缘服务器上有所不同。此外,由于安全考虑,最终用户并不总是能够获得此类配置信息。本文首先提出了一种学习驱动的算法,用于在这样一个非对称信息化的边缘计算环境中准确预测所有任务的TET。基本思想是利用 TTE 和边缘服务器配置之间的基础相关性,仅使用少量采样的 TTE 来预测未知 TTE。接下来,我们制定任务卸载问题,解决受约束的优化问题,不幸的是,这被证明是NP硬的。为了解决上述挑战,我们设计了一种任务卸载算法,称为"最大效率首次订购 "(MEFO),以实现近乎最佳的效率。进行了现场测量和实验,以证明我们提出的学习驱动算法能够比其它算法更准确地预测 TTE,只要采样的 TT 分数大于一个小型预定义阈值,并且我们建议的 MEFO 算法在边缘服务器信息非常有限的情况下实现了更高的任务卸载成功率和更短的处理延迟。