Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing(边缘智能:通过边缘计算铺开人工智能的最后一步)
本文对边缘智能的研究工作进行了全面的调查。它概述了用于深度学习模型的体系结构,框架和新兴的关键技术,以便在网络边缘进行训练和推理。
摘要
随着深度学习的突破,近年来见证了人工智能(AI)应用程序和服务的蓬勃发展,从个人助理到推荐系统再到视频/音频监视。最近,随着移动计算和物联网(IoT)的普及,数十亿个移动和物联网设备已连接到因特网,从而在网络边缘生成了数十亿字节的数据。在这种趋势的推动下,迫切需要将AI前沿推向网络边缘,以充分释放边缘大数据的潜力。为了满足这种需求,边缘计算是一种新兴的范例,它将计算任务和服务从网络核心推向网络边缘,已被广泛认为是一种有前途的解决方案。由此产生的新的跨学科,用于边缘智能(EI)的边缘AI已开始接受大量的兴趣点。但是,关于EI的研究仍处于起步阶段,计算机系统和AI社区都非常希望有专门的场所来交流EI的最新进展。为此,我们对EI的最新研究工作进行了全面调查。具体来说,我们首先回顾一下在网络边缘运行AI的背景和动机。然后,我们提供了针对深度学习模型的总体架构,框架和新兴关键技术的概述,以用于在网络边缘进行训练、推理。最后,我们讨论了有关EI的未来研究机会。我们相信,这项调查将引起越来越多的关注,激发出富有成果的讨论,并激发有关EI的进一步研究思路。
关键词
人工智能,深度学习,边缘计算,边缘智能。
一、引言
我们生活在一个空前的人工智能时代。在算法,计算能力和大数据的最新进步的推动下,深度学习最令人眼花缭乱的人工智能领域在计算机视觉、语音识别和计算机视觉等众多领域取得了重大突破。象棋(例如:AlphaGo)和机器人技术的自然语言处理。受益于这些突破,以智能个人助理,个性化购物建议,视频监控和智能家居设备为代表的一系列智能应用程序迅速受到关注,并获得了极大的普及。众所周知,这些智能应用程序极大地丰富了人们的生活方式,提高人类生产力和提高社会效率。
作为推动AI发展的关键驱动力,大数据最近已经经历了数据源的巨变,从大规模云数据中心转移到了越来越广泛的终端设备,例如移动设备和物联网(IoT)设备。传统上,大数据(例如,在线购物记录,社交媒体内容和业务信息学)主要是在大型数据中心中生成和存储的。但是,随着移动计算和物联网的普及,这种趋势现在正在逆转。具体地说,思科估计到2021年,网络边缘的所有人,机器和事物将产生近850 ZB 。与之形成鲜明对比的是,到2021年,全球数据中心流量将仅达到20.6 ZB。显然,通过将大量数据引入AI,边缘生态系统将为AI提供许多新颖的应用场景,并推动AI的持续蓬勃发展。
但是,由于对性能,成本和隐私的关注,将AI前沿推向位于互联网最后一步的边缘生态系统非常重要。为了实现这一目标,传统的观点是将大量数据从IoT设备传输到云数据中心进行分析。但是,当在广域网(WAN)上移动大量数据时,金钱成本和传输延迟可能会非常高,隐私泄漏也可能成为主要问题。另一种方法是设备上分析,该分析在设备上运行AI应用程序以本地处理IoT数据,但是,性能和能源效率可能会受到影响。这是因为许多AI应用程序都需要很高的计算能力,大大超过了资源和能源受限的IoT设备的容量。
为了应对上述挑战,近来提出了边缘计算,其将云服务从网络核心推向了更靠近物联网设备和数据源的网络边缘。这里的边缘节点可以通过设备对设备(D2D)通信,连接到接入点的服务器(例如,WiFi,路由器和基站)在附近的终端设备附近进行连接。 网络网关甚至是可供附近设备使用的微数据中心。尽管边缘节点的大小可以变化:从信用卡大小的计算机到具有多个服务器机架的微型数据中心,但边缘计算所强调的最关键的特征是与信息生成源的物理距离。从本质上讲,与传统的基于云的计算范式相比,计算和信息生成源之间的物理接近性有望带来诸多好处,包括低延迟,能效,隐私保护,减少带宽消耗,内部部署和环境意识。
的确,边缘计算和AI的结合已经引起了一个新的研究领域,即“边缘智能(EI)”或“边缘AI” 。 EI并没有完全依靠云,而是充分利用了优势资源以获得AI洞察力。值得注意的是,EI受到了业界和学术界的广泛关注。例如,著名的Gartner炒作周期已将EI纳入一项新兴技术,该技术将在接下来的五到十年内达到稳定的生产力水平。包括Google,Microsoft,Intel和IBM在内的主要企业已经提出了试点项目,以展示边缘计算在铺开AI的最后一步方面的优势。这些努力推动了广泛的AI应用,从实时视频分析,认知辅助到精密农业,智能家居和工业物联网(IIoT)。
值得注意的是,对这种新兴的跨学科EI的研究和实践仍处于早期阶段。通常,在工业和学术界都缺乏专门用于总结,讨论和传播EI的最新进展的场所。为了弥合这一差距,在本文中,我们对EI的最新研究成果进行了全面而具体的调查。具体来说,我们将首先回顾AI的背景。然后,我们将讨论EI的动机,定义和评级。接下来,我们将进一步回顾和分类概括新兴的计算架构以及用于EI模型训练和推理的支持技术。最后,我们将讨论EI的一些开放研究挑战和机遇。本文的组织如下。
1)第二节概述了AI的基本概念,重点是深度学习-AI最受欢迎的领域。2)第三节讨论了EI的动机,定义和评级。
3)第四节回顾了体系结构,用于培训EI模型的技术,系统和框架。
4)第五节回顾了EI模型推理的体系结构,技术,系统和框架。
5)第六节讨论了EI的未来方向和挑战
对于本文,我们希望它能够引起人们的关注,激发富有成果的讨论,并激发关于EI的进一步研究思路。
二、AI的入门
在本节中,我们将回顾AI的概念,模型和方法,特别着重于深度学习(AI的最流行领域)。
A.人工智能(AI)
尽管AI最近受到关注并引起了广泛关注,但它并不是一个新名词,它始于1956年。简而言之,AI是一种构建能够执行人类任务的智能机器的方法。这显然是一个非常宽泛的定义,它可以从Apple Siri引用到Google AlphaGo以及过于强大的技术尚未被发明。在模拟人类智能时,人工智能系统通常至少会显示出与人类智能相关的以下一些行为:计划,学习,推理,解决问题,知识表示,感知,运动和操纵,以及在较小程度上,社交智慧和创造力。在过去60年的发展中,人工智能经历了上升,下降以及再次上升和下降的过程。人工智能在2010年代后的最新兴起部分归因于深度学习的突破,深度学习是一种在某些有趣领域实现了人类水平准确性的方法。
B.深度学习和深度神经网络
机器学习(ML)是实现AI目标的有效方法。已经开发了许多机器学习方法,例如决策树,K-means聚类和贝叶斯网络,以训练机器根据从现实世界获得的数据进行分类和预测。在现有的机器学习方法中,通过利用人工神经网络(ANN)来学习数据的深度表示的深度学习,已在包括图像分类,面部识别等多个任务中实现了惊人的性能。由于深度学习模型采用的ANN通常由一系列层组成,因此该模型称为深度神经网络(DNN)。DNN的每一层都由神经元组成,这些神经元能够根据来自神经元输入的数据生成非线性输出。
输入层中的神经元接收数据并将其传播到中间层(也称为隐藏层)。然后,中间层的神经元生成输入数据的加权和,并使用特定的激活函数(例如tanh)输出加权和,然后将输出传播到输出层。最终结果显示在输出层。 DNN具有比典型模型更复杂和抽象的层,因此能够学习高级功能,从而在任务中实现高精度推断。DNN的三种流行结构:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)。
MLP模型是最基本的DNN,它由一系列完全连接的层组成[17]。与MLP中的完全连接层不同,在CNN模型中,卷积层通过执行卷积操作从输入中提取简单特征。使用各种卷积滤波器,CNN模型可以捕获输入数据的高级表示形式,使其最常用于计算机视觉任务,例如图像分类(例如AlexNet ,VGG网络, ResNet 和MobileNet )和对象检测(例如,快速R-CNN ,YOLO 和SSD )。 RNN模型是DNN的另一种类型,它使用顺序数据馈送。RNN的基本层次称为单元,此外,每个单元由层组成,一系列单元使RNN模型的顺序处理成为可能。 RNN模型广泛用于自然语言处理任务,例如语言建模,机器翻译,问题回答和文档分类。
深度学习代表了最先进的AI技术以及自然地适合边缘计算的高资源需求工作量。因此,由于篇幅所限,在本文的其余部分中,我们将专注于深度学习与边缘计算之间的交互。我们认为,所讨论的技术也可能对其他AI模型和方法产生有意义的影响,例如,随机梯度下降(SGD)是许多AI 、ML算法(例如k均值,支持向量)的流行训练方法机器和lasso回归),并且本文介绍的SGD训练的优化技术也可以部署在其他AI模型训练过程中。
C.从深度学习到模型训练和推理
对于DNN层中的每个神经元,它具有与该层的输入数据大小关联的权重向量。不用说,深度学习模型中的权重需要通过训练过程进行优化。在深度学习模型的训练过程中,模型中权重的值通常是最初随机分配的。然后,最后一层的输出表示任务结果,并设置损失函数以通过计算错误率(例如,结果与真实标签之间的均方根误差)。为了调整模型中每个神经元的权重,使用了一种优化算法,例如SGD ,并计算了损失函数的梯度。利用反向传播机制,错误率会在整个神经网络中传播回来,并且权重会根据梯度和学习率进行更新。通过输入大量训练样本并重复此过程直到错误率低于预定义的阈值,可以获得具有高精度的深度学习模型。DNN模型推断在训练后发生。例如,对于图像分类任务,通过大量训练样本的馈送,对DNN进行了训练以学习如何识别图像,然后,推理将真实世界的图像作为输入,并快速得出预测结果/他们的分类。训练过程包括前馈过程和反向传播过程。请注意,推理仅涉及前馈过程,即来自真实世界的输入将通过整个神经网络传递,并且模型将输出预测结果。
D.流行的深度学习模型
为了更好地了解深度学习及其应用,在本节中,我们概述了各种流行的深度学习模型。
1)卷积神经网络:对于图像分类,AlexNet 作为2012年第一个赢得ImageNet挑战的CNN,由五个卷积层和三个完全连接的层组成。 AlexNet需要6100万个权重和7.24亿个MAC(乘加计算)来对尺寸为227×227的图像进行分类。为了获得更高的精度,VGG-16 被训练为更深的16层结构,包括由13个卷积层和3个完全连接的层组成,需要138百万个权重和15.5G MAC来对尺寸为224×224的图像进行分类。为了提高准确性同时减少DNN推论的计算,GoogleNet 引入了一个概念由不同大小的过滤器组成的模块。 GoogleNet与VGG-16相比,具有更高的准确性,同时仅需要700万个砝码和1.43G MAC即可处理相同大小的图像。 ResNet 是最先进的技术,它使用“捷径”结构来达到人类水平的准确性,且前五位的错误率低于5%。 “快捷”模块用于解决训练过程中的梯度消失问题,从而可以训练具有更深结构的DNN模型。 CNN通常用于计算机视觉中。给定来自现实世界的一系列图像或视频,利用CNN,AI系统将学习自动提取这些输入的功能以完成特定任务,例如图像分类,面部认证和图像语义分割。
2)递归神经网络:对于顺序输入数据,已经开发了RNN来解决时序问题。 RNN的输入包括当前输入和先前的样本。 RNN中的每个神经元都拥有一个内部存储器,用于保存先前样本中的计算信息。 RNN的训练基于时间反向传播(BPTT)。长短期记忆(LSTM)是RNN的扩展版本。在LSTM中,门用来代表神经元的基本单位。LSTM中的每个神经元都称为存储单元,并包括乘法忘记门,输入门和输出门。这些门用于控制对存储单元的访问,并防止它们因不相关的输入而受到干扰。信息通过门添加或删除到存储单元。门是不同的神经网络,可以确定在存储单元上允许哪些信息。忘记门可以了解训练过程中保留或忘记的信息。由于处理输入长度不固定的数据的优越性,RNN已广泛用于自然语言处理中。 AI在这里的任务是建立一个可以理解人类说的自然语言的系统,例如自然语言建模,单词嵌入和机器翻译。
3)生成对抗网络:生成对抗网络(GAN)包含两个主要组件,即生成和区分网络(即生成者和区分者)。生成器负责从真实数据的训练数据集中学习数据分布之后,负责生成新数据。鉴别器负责根据生成器生成的伪数据对真实数据进行分类。 GAN通常部署在图像生成,图像转换,图像合成,图像超分辨率和其他应用程序中。
4)深度强化学习:深度强化学习(DRL)由DNN和RL组成。DRL的目标是创建一个智能代理,该代理可以执行有效策略,以可控动作最大化长期任务的回报。 DRL的典型应用是解决各种调度问题,例如游戏中的决策问题,视频传输的速率选择等。
在DRL方法中,RL从环境中搜索针对状态的最佳操作策略,而DNN负责代表大量状态并近似于操作值以估计给定状态下的操作质量。奖励是代表预定义之间的距离的函数要求和行动的执行。通过持续学习,DRL模型的代理可以用于各种任务,例如游戏。
三、边缘智能(EI)
边缘计算和AI的结合催生了EI。在本节中,我们讨论EI.A的动机,好处和定义。
四、EDGE智能模型培训
五、边缘智能模型推论
六、未来研究方向
在上面对现有工作进行的全面讨论的基础上,我们现在阐述了EI的关键开放挑战和未来研究方向。
A.编程和软件平台
B.资源友好型边缘AI模型设计
C.计算感知网络技术
D.具有各种DNN性能指标的权衡设计
E.智能服务和资源管理
F.安全和隐私问题
G.激励和商业模式
七、总结
在AI和IoT蓬勃发展的推动下,迫切需要将AI前沿从云推进到网络边缘。为了满足这一趋势,边缘计算已被广泛认为是一种在资源受限的环境中支持计算密集型AI应用程序的有前途的解决方案。边缘计算和AI之间的联系催生了EI的新范式。
在本文中,我们对EI的最新研究成果进行了全面调查。具体来说,我们首先回顾了在网络边缘运行AI的背景和动机。然后,我们提供了针对深度学习模型的总体架构,框架和新兴关键技术的概述,这些模型针对网络边缘的训练和推理。最后,我们讨论了EI面临的开放挑战和未来的研究方向。我们希望这项调查能够引起越来越多的关注,激发出富有成果的讨论,并激发关于EI的进一步研究思路。