文献阅读5

本文介绍了一种利用多尺度残差卷积神经网络进行图像超分辨率重建的方法,旨在解决传统方法在图像细节和纹理重建上的不足。通过结合局部和全局残差学习,有效缓解梯度消失问题,增强了特征信息的传播。实验表明,这种方法能更充分地利用图像的多尺度信息,尤其对于高频细节的恢复效果显著。
摘要由CSDN通过智能技术生成

 本文提出了多尺度残差卷积神经网络的图像超分 辨率重建方法,利用多尺度特征提取的思想,将多个不同尺度卷积核提取的特征信息进行融合,用以解决当前 几种经典方法对图像细节特征提取不够充分和图像纹 理区域重建不够清晰等问题;利用局部残差学习和全局 残差学习相结合,提高了信息流传播的效率,减轻了梯 度消失现象.

总结:作者主要是用了多尺度的方法来提取多种尺度的信息,与原始的inceptiion不同的是,本文采取的是相加的方式进行特征融合。作者在做消融实验的时候,主要是在网络的深度和残差单元的有效性上进行实验。总体来说,实验比较简单。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值