Socially-Motivated Cooperative Mobile Edge Computing(社交合作的移动边缘计算)
摘要
在本文中,我们提出了一种基于社会动机的协作移动边缘计算的新颖范例,该模型利用移动和可穿戴设备用户之间的社交联系结构来实现有效的和可信赖的协作,以进行协作计算任务执行。我们设想将本地设备计算和网络资源共享相结合,可以使设备具有多种灵活的任务执行方法,包括本地移动执行,D2D卸载执行,直接云卸载执行和D2D辅助的云卸载执行。具体来说,我们提出了一种用于协作移动边缘计算的系统模型,其中开发了一种设备社交图模型来捕获设备之间的社交关系。然后,我们通过将社交联系结构集成到设备计算和网络资源共享过程中,设计出一种基于社交意识的双向匹配的协作任务卸载算法。我们使用Erdos-Renyi和基于实迹的社交图评估社交动机的协作移动边缘计算的性能,这证实了所提出的社交意识机制的优越性能。
引言
随着智能手机和可穿戴设备等智能移动设备的日益普及,诸如实时人脸识别,自然语言处理,虚拟现实和增强现实等越来越多的智能移动应用正在兴起。这种移动应用程序通常运行资源消耗大的算法(例如,深度学习和GPU渲染),这将需要大量的计算以及高能耗。但是,受物理尺寸约束的约束,大多数移动设备通常都受到资源限制,其计算能力和电池容量有限。
为了应对这一挑战,已经提出了移动边缘计算(更一般地说是雾计算),这是一种新兴的范例,它利用大量的协作最终用户和/或近用户设备来执行大量的协作。他们每个人都可以从中受益。由于移动边缘计算是在网络边缘实现的,因此它承诺为设备用户提供低延迟以及敏捷的计算增强服务。可以利用不同类型的设备(例如,可穿戴设备,智能手机和平板电脑)的多种功能和多路复用增益(由于设备之间资源可用性的运行时异质性)来支持协作。任务执行。通过在设备之间协作地共享异构计算和通信资源,我们构想了协作移动边缘计算的新范例,设备用户可以灵活地在多种方法中进行选择,以根据用户的不同需求和设备的资源条件进行任务执行,包括以下内容。
•本地移动执行:设备用户可以选择在其移动设备上本地执行任务,以免在任务分担上产生过多开销。
•设备到设备(D2D)分载执行:设备通过D2D通信进行任务卸载,可以使位于网络边缘附近的设备彼此之间共享计算资源。
•直接云卸载执行:设备可以通过以下方式将其任务直接卸载到边缘云:其高质量的蜂窝通信链路,以便利用强大的云计算功能。
•D2D辅助的云卸载执行:蜂窝连接较差的设备可以首先通过D2D连接将计算任务传输到附近具有高质量蜂窝链路的设备,然后可以帮助将计算量大的任务转移到边缘云中。
为了获得协作式移动边缘计算所带来的巨大利益,关键的挑战是如何激发设备之间的高效协作。例如,一方面,为了实现高效的D2D卸载执行,它要求附近的设备以协作的方式共享其计算资源。另一方面,要实现高效的云卸载执行,通常需要高质量的蜂窝连接才能将任务卸载到边缘云。由于本地环境因素(例如,衰落)和异构传输技术(例如3G / 4G),不同的设备会遇到各种蜂窝传输条件。因此,非常需要在设备之间进行蜂窝网络资源共享以实现有效的云任务数据传输的合作。为了应对这些挑战,在本文中,我们提出了一种社交动机的协作移动边缘计算的新范例,以实现高效的混合任务卸载。由于移动和可穿戴设备由人携带和拥有,人们希望利用人类固有的社会纽带来激发协作式移动边缘计算。随着诸如Facebook和Wechat之类的在线移动社交媒体的广泛渗透,我们的日常生活中,许多用户正在积极地参与在线社交互动,结果,用户之间的社交关系得到了广泛扩展。这实际上为探索社会维度并实现了具有社会动机的协作移动边缘计算系统设计开辟了新空间。
有了这种洞察力,就可以利用设备用户的社交关系结构来激励他们,从而在设备计算和网络资源共享方面实现有效且可信赖的合作。这将成为社会动机的协作移动边缘计算系统的基石。具体来说,我们首先介绍用于联合本地计算和网络资源共享的协作移动边缘计算系统模型,该模型可以为设备提供灵活多样的任务执行方法。因此,我们随后提出了一种设备社交图模型来捕获设备之间的社交关系,然后通过将社交关系结构集成到设备计算和网络资源共享过程中,开发出一种基于社交感知的双向匹配的合作任务分担算法。 。使用Erdos-Renyi和基于真实轨迹的社交图进行的广泛绩效评估,证实了所提出的具有社交意识的协作任务卸载解决方案的出色性能。
本文的其余部分组织如下。我们将在以下部分中首先讨论相关工作,然后介绍协作移动边缘计算系统模型。然后,我们提出了具有社会意识的协作任务卸载算法,讨论了扩展方向,最后总结了本文。
相关工作
合作移动边缘计算模型
社交合作伙伴任务卸载算法
现在,我们考虑通过利用设备用户之间的潜在社会纽带来设计一种具有社会意识的协作任务卸载算法。基于社会动机的合作结构,我们将提出一种基于社会意识的两方匹配的方案,以找到使所有设备执行任务的系统开销最小化的最佳解决方案。
设备社交图
社会化的最佳匹配合作伙伴任务卸载
性能评估
关于未来方向的讨论
社会团体效用统一协作的移动边缘计算
社会团体资源合作伙伴资源池
总结
在本文中,我们提出了一种基于社会动机的协作移动边缘计算的新颖范例,该模型利用了移动和可穿戴设备用户之间的社交联系结构来实现任务执行中的有效和可信赖的合作。出于社会动机的协作移动边缘计算可以方便地灵活选择任务执行方法,包括本地移动执行,D2D卸载执行,直接云卸载执行以及D2D辅助的云卸载执行。
具体来说,我们提出了一种用于协作移动边缘计算的系统模型以及一种设备社交图模型来捕获设备之间的社交关系。我们还通过集成基础的社交联系结构以及设备之间的网络连接,设计了一种基于二分匹配的基于社交意识的协作任务卸载算法。使用Erdos-Renyi和基于真实轨迹的社交图进行绩效评估,证实了所提出的社交意识机制可以实现出色的性能,因此是进一步探索的有希望的方向。