有N台机器重量各不相等,现在要求把这些机器按照重量排序,重量从左到右依次递增。移动机器只能做交换操作,但交换机器要花费一定的费用,费用的大小就是交换机器重量的和。例如:3 2 1,交换1 3后为递增排序,总的交换代价为4。给出N台机器的重量,求将所有机器变为有序的最小代价。(机器的重量均为正整数)
很有意思的一个贪心,首先要交换的数肯定会形成一个或多个环,然后对于每个环有两种情况,一种是用环内的最小的跑,一种是把环外的最小的把环内的最小的换掉,用环外最小的跑一次再换回来,为啥要换掉里面最小的呢,因为用环外最小的化简之后的公式是这样的*si.begin() * (cnt + 1) + sum + mi,所以后面加的越小整体就越小。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10, inf = 0x3f3f3f3f, mod = 1e9 + 7;
int a[maxn], b[maxn], go[maxn];
bool vis[maxn];
multiset<int> si;
map<int, int> pos;
bool cmp(int i, int j) {
return a[