[组合数学]组合数有关的公式及常用求和

本文探讨了组合数学中的几个核心概念,包括如何在O(logn)和O(n^2)的时间复杂度下求解组合数,以及涉及无限重复组合、不相邻排列的计算方法。此外,还列举了一系列组合数的递推公式和求和性质,如二项式系数的平方和。这些内容对于理解和应用组合数学至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

O(logn)求组合数

fac[maxn] = {
   1, 1, 2};
ll C(int n, int m){
   return (fac[n] * quickpow((fac[m] * fac[n - m]) % mod, mod - 2)) % mod;}
for (int i = 3; i < maxn; ++i) fac[i] = (i * fac[i - 1]) % mod;

O(n^2)递推求组合数

for(int i = 0; i < maxn; ++i){
   
    CC[i][0] = CC[i][i] = 1;
    for(int j = 1; j < i; ++j){
   
        CC[i][j] = (CC[i - 1][j] + CC[i - 1][j - 1]) % mod;
    }
}

重复组合(无限)
n种不一样的球,每种球的个数是无限的,从中选k个出来,组合数为(C_{n + k – 1} ^ {k}) 。
不相邻的排列
从1 ~ n这n个自然数中选k个,这k个数中任何两个数不相邻数的组合为(C_{n – k + 1} ^ {k})。

来源:https://blog.csdn.net/bigtiao097/article/details/77242624
C n m = C n − 1 m − 1 + C n − 1 m C_n^m = C _{n-1}^{m-1}+C _{n-1}^{m} Cnm=Cn1m1+Cn1m
m C n m = n C n − 1 m − 1 mC_n^m = nC _{n-1}^{m-1} mCnm=

<think>好的,我现在需要回答用户关于组合数常用数学公式和计算方法的问题。首先,我要回忆一下组合数学的基础知识,尤其是组合数的定义和常用公式组合数通常表示为$C(n, k)$或者$\binom{n}{k}$,是从n个元素中选取k个元素的方法数。 首先,组合数的基本公式是$C(n, k) = \frac{n!}{k!(n-k)!}$,这是用户提到的引用[2]中的内容,需要确认是否正确。然后,可能需要介绍一些其他性质,比如对称性$C(n, k) = C(n, n-k)$,递推公式$C(n, k) = C(n-1, k-1) + C(n-1, k)$,以及二项式定理相关的展开式。比如,$(a + b)^n = \sum_{k=0}^n C(n, k) a^{n-k} b^k$,这个公式在引用[1]中提到用于栈的进出序列等场景,可能需要关联起来。 接下来,用户可能想知道组合数的计算方法。引用[2]中提到使用逆元来计算模数下的组合数,这应该是在处理大数或需要取模的情况下的方法,比如模数为质数时,利用费马小定理求逆元,预处理阶乘和逆元阶乘,从而快速计算组合数。这部分需要详细说明步骤,包括预处理阶乘数组和逆元数组,然后组合数的计算方式。 另外,组合数的一些其他计算方法比如递推法生成帕斯卡三角形,适用于小规模的n和k;或者利用对数计算避免阶乘溢出,不过这可能涉及近似值。这些方法是否需要提及?用户的问题是关于“计算方法”,所以应该包括多种方法,如直接计算、递推、模逆元方法等。 还有,组合数的生成函数可能也是一个点,比如生成函数在证明恒等式时的应用,但可能用户更关注实用计算方法,所以这部分可能不需要深入,但可以简要提及。 需要检查是否有其他重要的组合数公式,比如Vandermonde恒等式,或者组合数求和公式,比如$\sum_{k=0}^n C(n, k) = 2^n$,以及$\sum_{k=0}^n (-1)^k C(n, k) = 0$等。这些是否属于常用公式的范畴?根据用户的问题,可能需要列出这些常用公式,但需要确保准确性。 另外,Stirling数在引用[1]中被提到,可能需要说明Stirling数与组合数的区别,但用户的问题集中在组合数,所以可能不需要展开,除非有关联的应用。 在组织内容时,需要分点说明,先介绍基本定义和公式,再讲计算方法,可能分为直接计算、递推法、模运算下的逆元方法,以及应用场景举例。同时,引用相关的引用资料,比如引用[2]中的逆元方法,引用[1]中的组合数应用场景。 需要确保所有的数学公式用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,组合数的递推公式应该写成$C(n, k) = C(n-1, k-1) + C(n-1, k)$,而二项式定理则需要单独成段的公式。 最后,生成相关问题,可能需要考虑组合数的应用、不同计算方法的优缺点、组合恒等式的证明方法,或者组合数与其他数学概念的关系,如二项式分布、排列等。根据示例中的问题,用户可能希望问题涉及性能优化、应用场景、扩展方法等。 现在需要检查是否有遗漏的重要公式或方法,比如卢卡斯定理处理大数组合数取模的情况,或者多项式展开中的组合数应用。此外,组合数的对数计算可能也是一个方法,但可能不够常见,是否要包括? 总结步骤: 1. 定义组合数和基本公式。 2. 列出常用数学公式,如对称性、递推、二项式定理、求和公式等。 3. 计算方法:直接计算、递推法、模逆元法、对数近似等。 4. 应用场景,引用[1]中的例子。 5. 相关问题生成。 需要确保引用正确,每个引用只在相关的地方出现。例如,递推公式可能没有直接对应的引用,但组合数求法中的逆元方法对应引用[2]。应用场景对应引用[1]。 现在开始组织内容,确保每个部分清晰,使用中文,公式格式正确。</think>### 组合数常用数学公式与计算方法 #### 1. 基本定义 组合数$C(n, k)$表示从$n$个元素中选取$k$个元素的方案数,其公式为: $$ C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} $$ #### 2. 常用数学公式 1. **对称性** $$ C(n, k) = C(n, n-k) $$ 例如:$C(5, 2) = C(5, 3) = 10$。 2. **递推公式** $$ C(n, k) = C(n-1, k-1) + C(n-1, k) $$ 这是生成帕斯卡三角形的基础[^1]。 3. **二项式定理** $$ (a + b)^n = \sum_{k=0}^n C(n, k) a^{n-k} b^k $$ 用于多项式展开,例如栈操作序列的计数[^1]。 4. **求和公式** - $\sum_{k=0}^n C(n, k) = 2^n$ - $\sum_{k=0}^n (-1)^k C(n, k) = 0$ 5. **Vandermonde恒等式** $$ \sum_{k=0}^r C(m, k) C(n, r-k) = C(m+n, r) $$ #### 3. 计算方法 1. **直接计算** 根据阶乘公式直接计算,适用于$n$较小的情况。 例如:$C(5, 2) = \frac{5!}{2!3!} = 10$。 2. **递推法(动态规划)** 利用递推公式生成组合数表,时间复杂度$O(n^2)$。 ```python def comb_table(n): dp = [[0]*(k+1) for k in range(n+1)] for i in range(n+1): dp[i][0] = 1 for j in range(1, i+1): dp[i][j] = dp[i-1][j-1] + dp[i-1][j] return dp ``` 3. **模逆元法(大数取模)** 当需要对组合数取模(如模$p$为质数)时,利用费马小定理预处理阶乘和逆元,时间复杂度$O(n)$[^2]。 - 预处理阶乘数组`fact`和逆元数组`inv_fact`。 - 组合数公式: $$ C(n, k) \mod p = \text{fact}[n] \cdot \text{inv\_fact}[k] \cdot \text{inv\_fact}[n-k] \mod p $$ 4. **对数近似法** 通过取对数避免阶乘溢出: $$ \ln C(n, k) = \ln n! - \ln k! - \ln (n-k)! $$ 适用于数值较大的近似计算。 #### 4. 应用场景 1. **算法设计**:如动态规划中的路径计数。 2. **组合数学**:计算排列、二项分布概率(如引用[1]中的栈序列、二叉树种类)。 3. **密码学**:大数组合数在非对称加密中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值