[数论]逆元

模数为0则逆元不存在。
x的模m逆存在且唯一的充要条件为x与m互质(gcd(x, m) = 1)
除法逆元有两种计算方法。
费马小定理(模数一定为质数):(a / b) % p = a * b^(p – 2) % p;
如果模数不为质数,但gcd(a, m) == 1,请使用欧拉定理 a ϕ ( m ) ≡ 1 ( m o d   m ) a^{\phi(m)} ≡ 1 (mod\ m) aϕ(m)1(mod m)
如果模数不为质数,且gcd(a, m) != 1,请使用扩展欧拉定理
扩展欧几里得(不限制模数):
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll x, y;
void extgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0) x = 1, y = 0;
    else{
        extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
}
int main()
{
    ll n, m;
    cin >> n >> m;
    extgcd(n, m, x, y);
        if (x < 0) x += m;
    cout << x << endl;
    return 0;
}

线性求[1, n]的逆元:

inv[1] = 1;
for (int i = 2; i <= n; ++i) inv[i] = (ll)(p - p / i) * inv[p % i] % p;

线性求n个数的逆元(套装:预处理阶乘逆元):

void init()
{
    fac[0] = inv[0] = s[0] = 1;
    for (int i = 1; i < maxn; ++i) fac[i] = (ll)i * fac[i - 1] % mod;
    for (int i = 1; i < maxn; ++i)
        s[i] = (ll)s[i - 1] * fac[i] % mod;
    sv[maxn - 1] = quickpow(s[maxn - 1], mod - 2);
    for (int i = maxn - 1; i >= 1; --i)
        sv[i - 1] = (ll)sv[i] * fac[i] % mod;
    for (int i = 1; i < maxn; ++i)
        inv[i] = (ll)sv[i] * s[i - 1] % mod;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值