Dijkstra算法

原理

实际为贪心算法,结点分为两个集合,已确定最短路径的点集合S和未确定最短路径的点集合T,使用 D u D_{u} Du表示从起点s到终点u的最短路径
算法

  1. 初始化集合S为空,集合T包含所有的顶点,同时初始化 D s = 0 D_{s}=0 Ds=0,其它点的距离 D u = + ∞ D_{u}=+\infty Du=+
  2. 从集合T中取最短路径最小的点u加入到集合S中
  3. 对与顶点u的相邻的顶点作松驰操作
  4. 重复2直到集合T为空

n为顶点数,m为边数

求最小的点可以使用下面几种方法

优先级队列

在从最短路径 最小的点中选取最小值,可以使用优先级队列。因为在松驰操作中,会将有更新的顶点及其对应的距离信息作为数据放入队列,存在对于同一顶点,可能会多次入优先级队列,需要在从队列中取出信息时,需要判断顶点是否在S集合中,如果在,则忽略

时间复杂度 O ( ( n + m ) log ⁡ n ) O((n+m)\log n) O((n+m)logn)
在判断状态空间中的点是否已经处理过,可以判断队列中的点距离与当前点u对应的距离d[u]是否一致,如果不一致,说明已经计算过,则不处理

暴力法

使用bool vis[N]数组来表示区分 S,T集合。用vis[i]=true来表示属于S集合,为false的表示T集合
时间复杂度 O ( ( n 2 + m ) ) O((n^2+m)) O((n2+m))

int minu = -1;
for (int i = 0; i < N; i++) {
	if (!vis[i] && (minu == -1 || d[i] < d[minu]) {
		minu = i;
	}
}

实现

#include <bits/stdc++.h>

using namespace std;

#define _for(i, a, b) for(int i = (a); i < (b); i++)
#define _rep(i, a, b) for (int i = (a); i <= (b); i++)

struct Edge
{
    int u, v, d;
};

struct HeapNode
{
    int u, d;

    bool operator<(const HeapNode& other) const
    {
        return d > other.d;
    }
};

template <int SZV, int INF>
struct Dijkstra
{
    int n;
    vector<Edge> edges;
    vector<int> graph[SZV];
    bool done[SZV];
    int d[SZV], p[SZV];

    void init(int n)
    {
    	this->n = n;
        edges.clear();
        _for(i, 0, n) {
            graph[i].clear();
        }
    }

    void addEdge(int u, int v, int d)
    {
        graph[u].push_back(edges.size());
        edges.push_back({u, v, d});
    }

    void dijkstra(int s)
    {
        priority_queue<HeapNode> pq;
        fill_n(done, n, false);
        fill_n(d, n, INF);
        d[s] = 0;
        pq.push({s, 0});

        while (!pq.empty()) {
            HeapNode curNode = pq.top();
            pq.pop();

            int u = curNode.u;
            if (done[u]) {
                continue;
            }

            done[u] = true;
            _for(i, 0, graph[u].size()) {
                const auto& edge = edges[graph[u][i]];
                int v = edge.v;
                if (d[u] + edge.d < d[v]) {
                    d[v] = d[u] + edge.d;
                    p[v] = graph[u][i];
                    pq.push({v, d[v]});
                }
            }
        }
    }

	void getPath(int s, int e, deque<int>& path, bool rev = false)
    {
        int x = e;
        if (rev) {
            path.push_back(x);
        } else {
            path.push_front(x);
        }

        while (x != s) {
            x = edges[p[x]].u;
            if (rev) {
                path.push_back(x);
            } else {
                path.push_front(x);
            }
        }
    }
};

实践

UVa11374 Airport Express
UVa1416 Warfare And Logistics
UVa10537 The Toll! Revisited
UVa658 It’s not a Bug, it’s a Feature!

UVa1078 Steam Roller

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kgduu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值