深度学习数学基础之链式法则

本文介绍了深度学习中用于复杂函数求导的链式法则。首先解释了复合函数的概念,然后详细阐述了单变量和多变量函数的链式法则,并通过示例展示了如何对sigmoid与wx+b的复合函数进行求导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上次讲了导数和偏导数的基础,那么这些还不足以使用起来,今天就来讲讲误差反向传播中用来解决复杂函数求导的链式法则。

1 复合函数

已知函数y=f(u),当u表示为u=g(x)时,y作为x的函数就可以表示为y=f(g(x))这样的嵌套结构,这种嵌套结构的函数,就称为f(u)、g(x)的复合函数。

file

2 链式法则

2.1 单变量函数链式法则

已知单变量函数y=f(u),当uu表示为单变量函数u=g(x)时,复合函数f(g(x))的导函数可以如下简单地求出来。

file

上面这个公式称为单变量函数的复合函数求导公式,也称为链式法则。

file

公式的右边,如果将dx、dy、du都看作一个单独的字母,那么公式的左边可以看作将右边进行简单的约分的结果,这个看法总是成立的。通过将导数用dx、dy等表示,我们可以这样记忆链式法则:复合函数的导数可以像分数一样使用约分。,但是这个约分的法则不适用于dx、dy的平方等情形。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值