功率谱和幅度谱区别

无线信号经傅里叶变换后得到幅度谱和相位谱。幅度谱和相位谱在频域上完整的描述出一个信号。简而言之,有了信号幅度谱和相位谱可恢复时域信号。

功率谱或功率谱密度是频域上描述信号功率随频率的变化情况。幅度谱与功率谱是平方的关系。功率谱丢失相位信息。

因此不同的信号可能具有相同的功率谱。

### FFT 中幅度谱功率谱频谱的区别 #### 幅度谱 幅度谱表示的是信号经过离散傅里叶变换 (DFT) 后各个频率分量对应的幅值大小。对于一个时间域内的信号 \( x[n] \),其 DFT 可以写成: \[ X[k]=\sum_{n=0}^{N-1}x[n]\cdot e^{-j2\pi kn/N}, k=0,1,\ldots,N-1 \] 其中,\( |X[k]| \) 就是该信号在第 \( k \) 个频率上的幅度值[^1]。 ```matlab % 计算幅度谱的例子 Fs = 1000; % Sampling frequency T = 1/Fs; % Sample time L = 1000; % Length of signal t = (0:L-1)*T; % Time vector S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); X = fft(S); magnitude_spectrum = abs(X/L); % Amplitude Spectrum frequencies = Fs*(0:(L/2))/L; plot(frequencies,magnitude_spectrum(1:L/2+1)) title('Magnitude Spectrum') xlabel('Frequency (Hz)') ylabel('|Y(f)|') ``` #### 功率谱 功率谱描述了单位带宽内平均功率随频率的变化情况。它通常用于随机过程的研究中,在这种情况下直接做傅立叶变换是没有意义的;因此转而考虑功率谱来反映统计特性。根据维纳—欣钦定理,平稳随机过程的功率谱与其自相关函数构成一对傅里叶变换关系[^3]。 计算方式可以是对幅度谱取平方再除以样本数量或总采样周期得到功率谱密度(Power Spectral Density, PSD)[^4]: \[ P_x(k)=|X[k]|^2/(N\Delta t)\quad or\quad P_x(k)=(|X[k]|/\sqrt{N})^2/T_s \] 这里 \( T_s=N\Delta t \) 是总的观测时间段长度。 ```matlab % 计算功率谱的例子 power_spectrum_density = magnitude_spectrum.^2 / L * Fs; figure; plot(frequencies,power_spectrum_density(1:L/2+1)); title('Power spectral density'); xlabel('frequency (Hz)'); ylabel('PSD (\mu V^2/Hz)'); ``` #### 频谱 广义上来讲,“频谱”是一个较为笼统的概念,它可以指代任何通过某种形式转换到频率域后的图形化展示结果。具体来说,如果特指的是由快速傅里叶变换(Fast Fourier Transform, FFT)获得的结果,则可能更倾向于指向上述提到过的“幅度谱”。然而有时候也会用来泛指包含了相位信息在内的完整复数形式下的输出数据集。 综上所述,三者之间的主要区别在于它们所表达的信息侧重点不同:幅度谱关注于各频率成分的具体强度;功率谱则侧重体现这些成分的能量分布状况;而频谱作为一个更为广泛的概念涵盖了以上两种以及其他相关信息的表现形式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值