定义:一般原因时域信号采样离散化时,采样频率fc不满足奈奎斯特采样定理:fc>=2*fmax
奈奎斯特采样定理:模数转换时,采样频率fc符合这个定理,就能采出合适的信号,采的的离散信号无论是从时域还是频域都可以很好的恢复原信号。
重要概念:时域相乘等于频域卷积
采样函数:一般利用冲激函数采样,冲激函数有一个非常好的特性,时频上都是一条线,当然了,性质是不一样的。
为什么会发生频谱混叠呢?图中ws就是fc
A:这就开始纠结上面说的冲激函数时频域上都是一条线,但是线的意义不一样,间隔的意义也不一样。
理论计算下,得到a图,合理的获取时频域信号,完美。
补充理论:冲激函数的频谱,以fc等间隔的离散频谱,这也就是为什么时域离散采样,频域上是周期延拓。
现在来考虑奈奎斯特采样定理fc>=2*fmax。
我们从频域分析。
就是频域上周期延拓的频谱不要有交叠部分,就是不混叠。避免这个,只要频域上周期延拓时,每个延拓的频谱距离的够远就好了,提高采样频率就好了,这就离得够远了。考虑极限情况,最小采样频率可以不混叠,fc=2*fmax。