文章来源周成,孙恺庭等论文《基于数字孪生的车间三维可视化监控系统》
1车间三维可视化监控系统模型
1.1基于数字孪生的三维可视化监控系统模型
数字孪生也称为数字镜像、数字映射或者数字双胞胎。数字孪生最早的应用可追溯至NASA的阿波罗探月项目。在该项目中,NASA通过构建两个完全相同的空间飞行器,一个用于空间飞行,称为物理实体,另一个被留在地球上,称为孪生体。通过执行任务前对物理实体与孪生体的充分训练,使具有能够较为准确地反映物理实体运行状态的能力,从而实现对物理实体的有效监控。近年来,数字孪生技术在电力、汽车、医疗、船舶、城市建设、交通规划等多个领域中展现出越来越大的应用潜能,数字孪生技术成为实现信息物理系统(Cyber-Physical Systems,CPS)的关键技术,但是由于缺乏通用的数字孪生理论模型和构建方法,阻碍了数字孪生在相关领域的应用。目前,数字孪生理论模型包括经典数字孪生概念模型、数字孪生五维模型、CPS5C模型、C2PS模型等,这些理论模型可概括为数据、模型、服务三大核心要素,车间三维可视化监控系统需求与其一致。本文参考数字孪生五维模型架构和C2PS模型“云”部署方式,结合工业物联网平台强大的数据整合和系统集成能力,提出以工业物联网平台作为系统服务平台,基于数字孪生的车间三维可视化监控系统六维模型Mvm,包括物理车间(Physical Shop, PS)、虚拟车间(Virtual Shop, VS)、服务(Services, Ss)、孪生数据(Digital Data, DD)、前端展示(Front-end Display, FD),连接(Connection,CN),各维间的关系如图1所示
1.2 三维可视化监控系统开发流程
基于数字孪生的车间三维可视化监控系统开发流程如图2所示。物理车间(PS)到虚拟车间(VS)的映射是实现三维可视化监控的核心,为建立真实的映射过程,需要建立车间生产系统作业模型,从而准确地描述车间动态行为。本文采用运行逻辑建模方法描述生产系作业逻辑,通过将车间制造过程孪生数据 (DD)转化为相应的车间事件,驱动设备状态的改变以及工件在不同工位间的流转,实现物流的实时映射。采用虚拟模型构建方法建立虚拟车间(VS)。采用事件驱动实现物流的实时映射、采用模型驱动实现设备的实时映射;由物流实时映射、设备实时映射结合工艺流程,实现产品的实时映射,最终通过硬件实现可视化监控的前端展示(FD)。三维可视化监控系统开发关键技术可总结为孪生数据的采集、车间虚拟场景构建以及数据的实时映射。
本文以工业物联网平台作为数据总线,借助工业物联网平台强大的设备接入、 数据管理和系统集成能力,降低车间数据采集与管理的难度,以便于三维可视化监控系统的快速开发和部署。典型的工业物联网平台有COSMOPlat, OceanConnect Iot、ThingWorx等。 以工业物联网平台作为数据总线的优势在于:
(1)设备接入能力强。通过平台集成的工业网关、中间件、嵌入式操作系统等成熟产品解决方案,可快速构建平台与资源的连接,从而实现对人员、设备、软件、物料、环境等各类生产要素数据的全面采集。
(2)完善的数据服务。工业物联网平台基于开源开发工具以及微服务架构等方式,可灵活地为开发者实现基于情景驱动的数据服务。在车间三维可视化监控系统中数据应用情景主要包括基于实时数据为三维虚拟场景提供数据驱动和基于历史数据为监控系统提供决策支持两部分。
(3)系统开发效率高。工业联网平台通过将技术、知识、经验等资源固化为可移植、可复用的工业微服务组件库,为开发者屏蔽了设备连接、软件集成与部署、计算资源调度的复杂过程,只需专注于系统功能的设计,显著提高了系统的开发率。
基于工业物联网平台的数据采集流程如图3所示,以工业联网平台作为数据总线,以高频无源射频识别 ( Radio Frequency Identification,RFID) 采集物料信息,以OPC协议和设备软件开发工具包结合远程过程调用协议(Remote Procedure Call protocol,RPC ) 实现设备数据的采集; 以JSON格式进行数据传输满足不同编译环境下的数据交换;基于REST FUL架构为虚拟车间 ( VS) 和前端显示 ( FD )提供数据服务。首先通过多种数据采集方式实现车间数据的采集;然后基于分布式文件系统、NoSQL数据库、关系数据库、时序数据库等不同的数据管理引擎实现车间数据的分区选择、存储、编目与索引;最后,基于REST FUL架构的GET方法,实现上层应用与工业物联网平台之间的数据交换。
2 虚拟场景构建
车间虚拟场景构建流程如图4所示,主要由几何建模、场景构建、人机交互和场景优化等构成。几何建模是虚拟场景构建的基础;场景构建是对几何建模的进一步完善,通过添加必要的灯光、材质、特效使虚拟场景具有真实的质感;人机交互包括人机交互界面设计、外部输入事件响应等,目的在于实现三维虚拟场景中的场景漫游;为了平衡虚拟场景绘制复杂度和绘制实时性之间的矛盾,保证大型场景下系统的流畅性,需优化虚拟场景,最终获得虚拟车间场景模型。
3 数据实时映射
3.1 多层次映射
物理车间 ( PS) 到虚拟车间 (VS ) 的实时映射是实现车间三维可视化监控的核心。在车间运行期间,生产资源发生动态变化,为了形成能够覆盖车间制造全生命周期的可视化实时监控,本文从物流、设备、产品三方面建立基于孪生数据 (DD) 驱动的虚拟车间三层映射体系,准确地描述车间动态行为,如图6所示。
(1)物流层次 将车间制造过程实时状态数据转化为相应车间事件,驱动产品在不同工位间的流转实现物流映射。
(2)设备层次 设备的映射是虚拟车间 ( VS ) 三层映射体系的最小映射单位, 通过物联网技术、传感器技术、接口技术等实现物理设备动作的实时感知,并基于孪生数据驱动虚拟模型实现物理设备在虚拟环境下的虚实同步。
(3)产品层次 产品的映射是在实现设备层次和物流层次映射的基础上,将产品的工艺流程、实时位置以及设备实时状态转换为车间事件,基于事件驱动的方法实现产品模型的动态改变,最终实现产品状态的实时映射。
3.2 运行逻辑建模
虚拟车间三层映射体系中的物流映射是基于车间运行逻辑模型动态映射框架实现的。常见的车间运行逻辑建模方法有实体流程图、活动循环图Petri网、排队论、极大代数法等。 混流自动化生产线是典型的离散事件动态系统,任务执行过程可表示为事件和状态,适合采用Petri网建模。Petri网是一种用来描述离散事件统的数学建模语言,自20世纪60年代提出后,由于其形象直观、易于理解,在离散型制造业建模领域得到了广泛的发展与关注,并形成了面向不同领域的改进型Petri网:①判断网 (EP-N ) ; ②变迁网 (TP-N ) ; ③着色网 (CP-N ); ④高级网 (HLP-N );⑤扩展随机高级判定Petri网 (Extended Stochastic High-level Evaluation Petri Nets, ESHLP-N ) 。其中ESHLP-N方法定义了双重令牌(令牌:判断条件)和双重标识,不仅效果直观,还有利于分析系统性能;此外,通过调度规则的引入,提高了ESHLP-N方法的推理和决策能力,使其在柔性制造系统的建模、 调度、仿真优化方面具有良好的效果。本文采用ESHLP-N方法描述生产系统作业逻辑,通过车间事件驱动生产系统状态转换,从而动态映射物理车间现场作业运行。下面以机加工单元为例,说明ESHLEP-N模型的建立过程。
物料出库,是自动化生产线的第一道工艺。即按照工艺需求,控制堆垛机从立体仓库中取岀相应的物料,在经过视觉检测或RFID检验核对物料信息后, 由物流系统转运至下道工艺的暂存区。自动化仓库单元的工艺流程图如图6所示。
自动化仓库单元的ESHLEP-N模型如图7所示。
图中:表示库所, 表示变迁 , 表示规则 ,p1表示物料库所,p2表示出库完成的物料库所,p3表示出库物料正确的库所,p4表示物流系统转运结束的库所,即下一步工艺的输入库所。因为p1库所上没有变迁,所以其中的令牌只来源于订单信息,而其库所的令牌是订单信息和上一个变迁产生的令牌相互作用的结果; g1表示检验工序不合格的废物料库所。
3.3 孪生数据映射
基于孪生数据(DD)的实时映射是实现车间三维可视化监控系统的关键。 虚拟车间(VS)构建方法不同,模型驱动方法也各不相同,表1介绍了两种模型驱动方法。