Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
问题描述:给定一个索引k,返回杨辉三角的第k层。层数从0开始,即第0层返回1,第一层返回1 1,第二层返回1 2 1,……以此类推,层数k+1为第k层的数的个数。
注:优化算法,只使用O(k)额外的空间,即算法空间复杂度为O(n)。
分析:用迭代的方法,第k层的值根据上一层(k-1)的值计算,每一层都在同一个List上操作。第k层位置j的值等于(k-1层位置j的值)+(k-1层位置j-1的值),位置j的值在覆盖位置(j+1)的值时会用到,所以在覆盖位置j的值时先将未覆盖的值保留,程序中用(pre_num = cur_num;)实现。
public class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> list = new ArrayList<Integer>();
list.add(1);
if (rowIndex >= 1)
list.add(1);
for(int i=2;i<=rowIndex;i++){
if (rowIndex == 0 && rowIndex == 1)
return list;
if(rowIndex >= 2){
list.add(1);
int pre_num = list.get(0);
for (int j = 1;j<list.size()-1;j++) {
int cur_num = list.get(j);
list.set(j, cur_num + pre_num);
pre_num = cur_num;
}
}
}
return list;
}
}