还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
以前的代码有点难懂,sort版简单的奉上
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int m,n,p[110];
struct Rad
{
int a,b,c;
}rad[11000];
bool cmp(Rad x,Rad y)
{
return x.c<y.c;
}
int find(int x)
{
if(x!=p[x])
p[x]=find(p[x]);
return p[x];
}
void kruskal()
{
int i,ans=0;
sort(rad+1,rad+m+1,cmp);
for(i=1;i<=m;i++)
{
int x=find(rad[i].a);
int y=find(rad[i].b);
if(x!=y)
{
ans+=rad[i].c;
p[x]=y;
}
}
printf("%d\n",ans);
}
int main()
{
while(scanf("%d",&n),n)
{
int i;
m=n*(n-1)/2;
for(i=1;i<=n;i++)
p[i]=i;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&rad[i].a,&rad[i].b,&rad[i].c);
}
kruskal();
}
return 0;
}