扇形电容半径究竟多大?

  扇形电容半径究竟多大?碎片三分钟,收获一丢丢。

  网上找的扇形电容资料良莠不齐,甚至还有错误,有一种说法是扇形电容半径r取1/4波长。岛主的第一感觉这个结论不对。因为前两篇文章就讲过:λ/4传输线是个阻抗变换器,本来是电容,经过λ/4传输线就会等效阻抗变换成电感;本来是短路接地,经过λ/4传输线等效阻抗变换成开路。

  扇形电容半径大于λ/8波长的那部分平行板电容,从圆心处看,其实已经开始等效于电感!没写错,是λ/8波长!

  思考了半天,决定以自己的思路重新分析整理扇形电容的工程设计方法。限于篇幅,今天只写扇形电容尺寸,下一篇写扇形电容的工程应用。

  但有一点得事先说明,以自己的思路原创一篇文章,其中很可能有错误。希望网友们能指出来。岛主反感大篇幅的公式推导,能用仿真就不用公式;能用初中代数解题,就绝不用微积分。废话少说。

  扇形电容阻抗需求

  扇形电容的结构是由两个板板构成的平行板电容,只不过有个极板是地平面,地平面的面积不限(没有画出来),远大于扇形面积。

  先看用于射频放大器的BiasTee滤波电路,工程上的需求是啥?

  看下图,从BiasTee滤波电路的三岔口向上看,Zin = ∞。以使电源支路对射频主信号线阻抗影响最小。

  根据λ/4传输线的阻抗变换性质,那么就要求扇形电容的圆心位置对地阻抗为零,Zc = 0

 

  理论上要求扇形电容圆心阻抗为零,但实际上可能做不到,因为扇形电容面积有限、扇形电容两个板板间距也不能永远接近于零。

  对于滤波电路来说,很小的对地容抗当然能用于滤波,很小的对地感抗也能用于滤波。

  建模仿真

  岛主又在为海飞丝(HFSS)代言了。建模如下:

 

  上左图是一根传输线,长度等于扇形半径,r=200mil,是为了看清楚电长度(相位)的。

  上右图是扇形电容,张角为60度。扇形半径r=200mil。

  采用RO4350B介质,介质厚度10mil。

  仿真得到扇形电容圆心处的等效阻抗Zc如下:

 

  注意看上图粗的绿色线,表示Zc的模值,居然与常规的贴片电容阻抗曲线很类似!

  大家如果做过PI仿真,就知道贴片电容由于有串联的分布电感,所以阻抗曲线很象上图的V形绿色线。

  这种曲线,说明了扇形电容其实等效于LC串联谐振电路!

  从虚部曲线也能看出,随着频率的升高,虚部从负值变为正值,过零点在4.8GHz附近。说明谐振频率在4.8GHz。——但还不是贴片天线。因为实部几乎为零,意味着辐射电阻不大。

  再看左图那根传输线的相位有多少,确认4.8GHz时的电长度:

 

  说明扇形半径r = 200mil的在4.8GHz频点的等效电长度为52度。比λ/8(也就是45度)稍微多一点。

  真正的45度位置,对应的频点是4.2GHz。而此频点的阻抗对应的阻抗是4.4欧姆,可能也就勉强用于电源滤波。

  定性解释

  那么间接说明文章开头的判断是正确的:从扇形电容圆心看等效阻抗,比λ/8远的那部分平板电容,其实已经开始变换为电感了!此电感与电容形成LC串联谐振电路,因此才会出现V形阻抗曲线。

  至少在上面的模型仿真中,扇形电容半径r = λ/4是错误的。因为从阻抗曲线中可以看出,λ/4对应的频点9GHz的Xc=20欧。

  观察这个V形阻抗曲线,假如要求电源阻抗Xc低至2欧甚至1欧,扇形电容阻抗带宽有点窄。——下一篇文章会对射频电路的电源滤波Xc有个定量分析。

  阻抗曲线带宽指标优化

  增大扇形平板电容容量,例如减小平行极板间距就可实现(过程略);

  或者将扇形张角增大到120度,或者2*120度:

 

  再对比结果:

  显然张角越大,则扇形电容阻抗Xc的带宽越宽。

  张角60度、120度、2*120度,所对应的谐振频点分别是4.8GHz、4.3GHz、3.9GHz。

  虽然扇形平板电容容量跨度有4倍,但阻抗Xc最低的谐振频点变化不大,Xc最低值对应的频点跨度约20%。

 

  结论

  扇形电容半径r = λ/4是错误的。

  扇形电容半径r ≈ λ/8,等效于串联LC谐振电路的滤波效果。

  在r ≈ λ/8的前提下,扇形张角越大,则滤波效果越好。

  出品|EDA365

  作者|何平华老师

  注:本文为EDA365电子论坛原创文章,未经允许,不得转载

<think>嗯,用户问的是“那些扇形是什么”。首先,我需要明确“扇形”在哪个上下文中被提及。因为之前的对话是关于复分析中的单叶映射,可能这里的“扇形”指的是复平面上的某个区域,或者是与单叶映射相关的几何形状。 可能的情况是,用户在阅读复分析相关内容时,遇到了如黎曼映射定理中的应用,其中将复杂区域映射到单位圆盘,而扇形可能是这些区域的一种形式。或者,在讨论某些特殊函数(如指数函数或幂函数)时,扇形区域常被用作定义域或映射后的像。 需要先确认用户所指的具体场景。但根据之前的讨论,可能涉及复分析中的扇形区域,比如指数函数将带状区域映射为扇形,或者幂函数将角形区域映射为扇形。例如,函数$f(z) = z^n$可以将角度为$\theta$的角形区域映射为角度$n\theta$的扇形,当n为实数时。 另外,扇形在复分析中可能指单叶映射下的像,如某些保形映射将圆盘或半平面映射为扇形区域,用于解决流体力学或电磁学中的边界问题。例如,在处理角形导体周围的电场时,可能需要将物理区域通过保形映射转为扇形,以简化计算。 也有可能用户提到的“扇形”与黎曼曲面或叶函数有关,但根据之前的对话重点在单叶映射,应更偏向于单叶函数下的几何区域。 需要组织信息,先给出扇形的数学定义,再联系复分析中的例子,如幂函数、指数函数的映射,以及它们在单叶映射中的应用。同时,需要确保解释清晰,结构分明,帮助用户理解扇形在复分析中的角色。 需要检查是否有遗漏的可能,比如在几何中的普通扇形,但结合上下文,应聚焦复平面上的扇形区域及其在映射中的表现。同时,可能涉及扇形作为单连通区域的例子,或被映射后的结果,如Koebe函数将圆盘映射为带有割缝的平面,而其他函数可能生成扇形结构。 总结回答结构:定义扇形,复分析中的例子,相关映射函数,应用场景,与单叶映射的联系。确保使用中文,术语准确,例子具体,如使用LaTeX公式时正确格式。</think>### 关于复分析中的“扇形”介绍 在复分析中,“扇形”通常指复平面($\mathbb{C}$)上的角形区域,或由某些全纯函数映射生成的扇状几何结构。以下是逐步解释: --- #### 1. **数学定义** - **普通扇形**:复平面上由两条射线(从原点出发)和半径围成的区域。 例如:$$ S = \{ z \in \mathbb{C} \mid 0 < |z| < r, \ \alpha < \arg(z) < \beta \} $$ 其中$\alpha, \beta$为角度,$r$为半径(见下图示意)。 ![扇形示意图](https://via.placeholder.com/150x100/CCCCCC/808080?text=扇形区域) *注:实际应用中可能涉及无限半径或特殊角度。* --- #### 2. **复分析中的典型例子** ##### (1) **幂函数映射** 函数$f(z) = z^n$($n > 0$为实数)将**角形区域**映射为**扇形**: - 原定义域:$\theta_1 < \arg(z) < \theta_2$ - 映射后像区域:$n\theta_1 < \arg(w) < n\theta_2$ **例如**: - $f(z) = z^2$将角度$\pi/4$的角形区域映射为$\pi/2$的扇形。 - 若$n=1/2$,则扇形角度被压缩。 ##### (2) **指数函数与对数函数** - $f(z) = e^z$将水平带状区域$\{ z \mid a < \text{Im}(z) < b \}$映射为**无限扇形**: $$ \{ w \mid e^a < |w| < e^b \} \ \text{且} \ \arg(w) \in \mathbb{R} \ (\text{覆盖无穷圈}) $$ 若限制$\text{Im}(z)$在宽度$2\pi$内(如$0 < \text{Im}(z) < 2\pi$),则映射为单叶的,生成一个**单圈扇形**。 --- #### 3. **与单叶映射的关联** - **保形映射的应用**: 单叶映射常将复杂区域(如边形、角形)转换为简单区域(如圆盘、半平面)。 **例如**: - 施瓦茨-克里斯托费尔映射(Schwarz-Christoffel Mapping)可将半平面映射为边形,其中扇形可视为边形的特例(仅有一个顶点在原点)。 - 函数$f(z) = z^{1/3}$将$0 < \arg(z) < 3\pi$的角形区域单叶映射为$\pi$宽度的扇形。 - **黎曼映射定理**: 任何单连通区域(如扇形)均可共形映射到单位圆盘,但具体映射形式可能涉及特殊函数。 --- #### 4. **物理与工程中的应用** - **电场与流体流动**: 处理角形导体或管道拐角处的场分时,通过保形映射将扇形区域转为规则区域(如矩形),简化计算。 **例如**:角形区域的静电势问题,可通过映射$w = z^\alpha$转换为平行电容器问题。 - **信号处理**: 扇形滤波器在频域设计中用于选择特定角度范围的信号分量。 --- #### 5. **与叶函数的区别** - **单叶映射**:扇形作为像区域时,映射是“一一对应”的(如$f(z) = z^2$仅在$\arg(z) \in (0, \pi)$内单叶)。 - **叶映射**:若原函数叶,扇形可能被覆盖次(如$f(z) = z^3$将全平面映射为覆盖3圈的扇形)。 --- **总结**:复分析中的“扇形”既可以是原始的角形区域,也可由全纯函数映射生成。它们在单叶映射理论、物理问题建模中扮演重要角色,是连接几何直观与复函数性质的桥梁。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值