yolo
文章平均质量分 65
具体实操
无奈ieq
这个作者很懒,什么都没留下…
展开
-
yolov8安装+运行
值得说明的是,v8作为一个工程化代码,不同于v5,你可以依据模块自己创建一个train.py。详细参数可以看下这个yaml配置文件(里面包含了训练,预测,测试等等的所有参数)train.py(我在内部放了一些平时可能用到的超参数,按个人需求修改)predict(内部包含了相关的超参数,这个可以根据需要修改)train(内部包含了相关的超参数,这个可以根据需要修改)val(内部包含了相关的超参数,这个可以根据需要修改)内部文件和v5的一样,复制过来即可,注意改下路径名。数据集文件和之前一样,改个路径即可。原创 2023-12-13 17:09:02 · 713 阅读 · 0 评论 -
yolo v5代码解析笔记(detect部分)
下面代码对img-size进行修改判断,首先,待检测图像的大小不一,对于YOLOv5网络而言,传入的检测图像resize为640。总体代码大致分为3个部分,main()函数和执行入口,保存参数配置的parse_opt()函数,画框保存等操作的run()函数。此函数用于定义相关参数,如权重文件,待检测图片/视频,传入网络的图片大小等等,参数较多,不分别说明了。32的倍数,此点需要进一步学习,待修改),为避免失真,因此需要对传入的图像提前进行修改大小。3.结果保存的路径设置(默认为创建,有心思可以修改)原创 2023-11-09 16:07:32 · 376 阅读 · 0 评论 -
yolo v5识别
若还是不行,则有可能是cuda节点被占用,修改device(这种情况一般不会发生,毕竟这个参数是切换显卡)yolo v5支持的数据集为txt格式的标签,所以选择VOC格式和ML格式的需要进行转化。txt:存放txt格式的标签(运行xml_to_txt.py文件后生成txt标签)运行xml_to_txt.py,此时txt文件夹中将会出现转化好的标签。在进行完格式转化后,我们还需要对数据集进行划分,训练集,验证集等等。找到这几个模型yolov5l,m,n,x,s。模型之间的区别如下图,大概就是训练效果和速度。原创 2023-09-20 18:58:31 · 125 阅读 · 0 评论 -
labelimg安装
anaconda新建一个py3.8的环境。下载完成后,直接输入。原创 2023-09-19 17:36:14 · 67 阅读 · 0 评论 -
yolov5环境配置
在requirements.txt文件中可以看到项目的环境要求。即可(这串代码意思是,下载requirements下的包)conda新建环境,python版本为3.8。运行成功后会出现这两个检测好的图片。我安装的是torch1.8.1。注意cuda版本号一致。运行detect.py。原创 2023-09-16 15:24:50 · 335 阅读 · 0 评论