线性回归

以根据房屋的属性来预测价格为例,假设房屋的价格与房屋的面积和居室的数目有关,如下表所示;

Living area() bedrooms Prices
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
把房屋的面积记为特征,把居室的数目记为特征,价格记为。我们猜测和之间,满足关系:

因此我们可以建立模型:

我们也可以把上式写成向量的形式

其中,是参数,是我们的训练数据和检测数据中的特征值。实际上,是未知量,我们的目标就是通过训练数据调整,来使得输出的结果更接近真实值。

在将训练的数据中的代入,都会得到一个输出,这个值和真实的之间会存在一个随机的误差:

我们假定所有的房屋都是独立的,我们可以认为,误差的存在可能是房屋中的价格还会受到一些其他的因素的影响,而这些因素在建模的过程中没有体现,这些细枝末节可能使得房屋的价格有一些震荡。如果把这些因素看成随机变量,当足够多的随机变量叠加之后,根据中心极限定理,形成的分布就是正态分布。因此:

误差是独立同分布的,服从均值为0,方差为某定值的高斯分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值