coroutine和generator的区别
generator是数据的产生者。即它pull data 通过 iteration,generator的作用是可以作为data pipeline使用.
coroutine是数据的消费者。它push data into pipeline 通过 send;coroutine来做filter;
解释:通过send(value)方法将value作为yield表达式的当前值,你可以用该值再对其他变量进行赋值.
协程:是在一个线程内执行多个子程序,子程序之间通过程序控制切换(有区别于多线程之间的线程切换,减少线程切换开支),通过状态控制共享资源,不需要锁机制。原理还是利用生成器
实现。
例:生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产
import time
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
time.sleep(1)
r = '200 OK'
def produce(c):
c.next()
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
if __name__=='__main__':
c = consumer()
produce(c)
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
首先调用c.next()启动生成器;
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
consumer通过yield拿到消息,处理,又通过yield把结果传回;
produce拿到consumer处理的结果,继续生产下一条消息;
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
generator是数据的产生者。即它pull data 通过 iteration,generator的作用是可以作为data pipeline使用.
coroutine是数据的消费者。它push data into pipeline 通过 send;coroutine来做filter;
解释:通过send(value)方法将value作为yield表达式的当前值,你可以用该值再对其他变量进行赋值.
协程:是在一个线程内执行多个子程序,子程序之间通过程序控制切换(有区别于多线程之间的线程切换,减少线程切换开支),通过状态控制共享资源,不需要锁机制。原理还是利用生成器
实现。
例:生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产
import time
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
time.sleep(1)
r = '200 OK'
def produce(c):
c.next()
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
if __name__=='__main__':
c = consumer()
produce(c)
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
首先调用c.next()启动生成器;
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
consumer通过yield拿到消息,处理,又通过yield把结果传回;
produce拿到consumer处理的结果,继续生产下一条消息;
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。