拉格朗日乘子法与KKT条件

拉格朗日乘子法和KKT条件

拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。

对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法

拉格朗日乘子法

先来看拉格朗日乘子法是什么,再讲为什么。

     

这个问题转换为

             

其中    

,称为拉格朗日乘子。

下面看一下wikipedia上是如何解释拉格朗日乘子法的合理性的。

现有一个二维的优化问题:

        

我们可以画图来辅助思考。

绿线标出的是约束  

的点的轨迹。蓝线是  

的等高线。箭头表示斜率,和等高线的法线平行。

从图上可以直观地看到在最优解处,f和g的法线方向刚好相反(或者说叫梯度共线),即

      

而满足  

的点同时又是  

的解。

      

所以  

 

等价。

新方程  

在达到极值时与   相等,因为   达到极值时  

总等于零。

KKT条件

先看KKT条件是什么,再讲为什么。

             

其中      

        

=>  

 

        

 

            

上面的推导到此中断一下,我们看另外一个式子。

                           

这里的  

  都就向量,所以去掉了下标   。另外一些博友不明白上式中         是怎么推出来的,其实很简单,因为   与变量  

无关,所以这个等式就是成立的。

        

=>          

     

此时  

                  
此时  

联合  

,   我们得到          

亦即                      

=>            

我们把      

称为原问题       的对偶问题,上式表明当满足一定条件时原问题、对偶的解、以及     是相同的,且在最优解         。把     代入           ,由           ,所以       ,这说明     也是   的极值点,即         

最后总结一下:

                     

=>                                      

KKT条件是拉格朗日乘子法的泛化,如果我们把等式约束和不等式约束一并纳入进来则表现为:

                                              

=>                                      

注:  

都是向量。

        

表明   在极值点     处的梯度是各个             梯度的线性组合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值