Spark 快速大数据分析 -垃圾邮件分类示例

垃圾邮件分析是一个用来快速了解MLlib的例子。这个程序用了两个函数:HashingTF与LogisticRegressionWithSGD,前者从文本数据构建词频(termfrequency)特征向量,后者使用随机梯度下降法实现逻辑回归。

机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并 以此来进行预测或作出决定。机器学习问题分为几种,包括分类、回归、聚类,每种都有 不一样的目标。拿分类(classification)作为一个简单的例子:分类是基于已经被标记的其 他数据点(比如一些已经分别被标记为垃圾邮件或非垃圾邮件的邮件)作为例子来识别一 个数据点属于几个类别中的哪一种(比如判断一封邮件是不是垃圾邮件)。
所有的学习算法都需要定义每个数据点的特征(feature)集,也就是传给学习函数的值。 举个例子,对于一封邮件来说,一些特征可能包括其来源服务器、提到 free 这个单词的次 数、字体颜色等。在很多情况下,正确地定义特征才是机器学习中最有挑战性的部分。例 如,在产品推荐的任务中,仅仅加上一个额外的特征(例如我们意识到推荐给用户的书籍 可能也取决于用户看过的电影),就有可能极大地改进结果。
大多数算法都只是专为数值特征(具体来说,就是一个代表各个特征值的数字向量)定义 的,因此提取特征并转化为特征向量是机器学习过程中很重要的一步。例如,在文本分类 中(比如垃圾邮件和非垃圾邮件的例子),有好几个提取文本特征的方法,比如对各个单 词出现的频率进行计数。
当数据已经成为特征向量的形式后,大多数机器学习算法都会根据这些向量优化一个定义 好的数学函数。例如,某个分类算法可能会在特征向量的空间中定义出一个平面,使得这 个平面能“最好”地分隔垃圾邮件和非垃圾邮件。这里需要为“最好”给出定义(比如大 多数数据点都被这个平面正确分类)。算法会在运行结束时返回一个代表学习决定的模型 (比如这个选中的平面),而这个模型就可以用来对新的点进行预测(例如根据新邮件的特 征向量在平面的哪一边来决定它是不是垃圾邮件)。图 11-1 展示了一个机器学习流水线的 示例。

 

#spark快速大数据分析  第11章
#垃圾邮件分类
# -*- coding:utf-8 -*-
# import sys
# reload(sys)
# sys.getdefaultencoding("utf8")

from  pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.feature import HashingTF
from pyspark.mllib.classification import LogisticRegressionWithSGD
from pyspark import SparkContext,SparkConf
conf = SparkConf().setAppName("local").setAppName("MY APP")
sc=SparkContext(conf=conf)
spam = sc.textFile('spam.txt')
normal = sc.textFile("ham.txt")

#创建一个HashingTF实例来把邮件文件映射为包含10000个特征的向量
tf = HashingTF(numFeatures=100000)
#各个邮件都被切分为单词,每个单词被映射为一个特征
spamFeatures = spam.map(lambda email : tf.transform(email.split(" ")))
normalFeatures = normal.map(lambda email:tf.transform(email.split(" ")))

#创建LabeledPoint数据集分别存放阳性(垃圾邮件)和阴性(正常邮件)的例子
positiveExamples = spamFeatures.map(lambda features:LabeledPoint(1,features))
negativeExamples = normalFeatures.map(lambda features:LabeledPoint(0,features))
trainingData = positiveExamples.union(negativeExamples)
trainingData.cache() #因为逻辑回归是迭代算法,所有换成训练数据RDD

#使用SGD算法运行逻辑回归
model = LogisticRegressionWithSGD.train(trainingData)

#以阳性和阴性的例子分别进行测试。首先使用一样的HashingTF特征来得到特征向量,然后对该向量应用到模型
postTest = tf.transform("O M G GET cheap stuff by sending money to ..".split(" "))
negTest = tf.transform("Hi Dad,I started studying Spark the other ...".split(" "))
print("Prediction for positive test example:%g" % model.predict(postTest))
print("Prediction for negative test example:%g" % model.predict(negTest))
 
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第10季。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值