slam的研究历史

本文探讨了SLAM(即时定位与地图构建)的研究历程,重点介绍了视觉SLAM的三种传感器类型:单目、双目和深度摄像头。随着计算机性能提升,视觉SLAM成为热门研究领域。单目SLAM通过图像匹配计算位姿,而图优化方法如GTSAM、g2o已成为主流。此外,文章提到了LSD-SLAM和ORB-SLAM在单目SLAM中的贡献,以及CNN-SLAM等在语义地图方面的进展。
摘要由CSDN通过智能技术生成

国内外研究现状、发展动态描述

即时定位与地图构建(Simultaneous Localization and Mapping, 即SLAM)的目的是让机器人在未知环境中持续地构建环境地图,并同时在地图中给自己定位。定位和建图两个问题相互依赖,准确的定位依赖于正确的地图,而构建正确的地图又需要准确的定位,这是一个迭代的过程[1]。

 进入2000年以后,随着计算机处理性能的大幅提升,以各种摄像头为传感器的SLAM逐渐成为研究新热点,并在近年开始有市场化的迹象。视觉传感器主要分为三种:1. 单目摄像头(Monocular Camera)2. 双目摄像头(BinocularCamera)3. 深度摄像头(RGB-D Camera)深度摄像头可以通过time of flight等方法来直接获得图像及对应的深度信息,优点在于方便获得深度数据,缺点在于成本高,体积大,室外环境基本报废。双目摄像头可以通过三角方法计算出深度信息,市面上有一些深度摄像头也是直接基于双摄像头来做的。然而双目摄像头在目标距离较远的时候会退化成单目。因此近年来大量的研究都是围绕单目进行的。单目SLAM可以通过临近图像匹配计算出摄像头位姿的变换[2],在两个视角上进行三角测距又可以得出对应点的深度信息[3]。通过这样迭代的过程可以实现定位及建图[4]。原理听起来很直观,然而现实环境中大量的测量噪声,计算误差造成了SLAM问题的无限复杂。于是解决不确定性问题是SLAM的核心。不确定性问题是很多研究领域的核心,但其实并没有很多的解决办法。大多数不确定性问题都用贝叶斯网络进行建模的[5],

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值