
点云PCL与SLAM
文章平均质量分 89
依附于“点云PCL”微信公众号的文章,主要是分享关于三维视觉,点云处理,以及SLAM相关的基础知识和文章。欢迎大家一起加入我们的微信和QQ交流群
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
点云PCL公众号博客
这个作者很懒,什么都没留下…
展开
-
模型参数公式与代码对应
在这篇文章中代码是比较清晰可理解的,首先我们从熟悉的KB相机模型来从公式对应到代码上KB模型我们需要求的参数是i=(fx,fy,cx,xy,k1,k2,k3,k4)i = (f_x,f_y,c_x,x_y,k_1,k_2,k_3,k_4)i=(fx,fy,cx,xy,k1,k2,k3,k4)KB相机的投影模型公式π(x,i)=[fxd(θ)xrfyd(θ)yr]+[cxcy],\pi(x, i) =\begin{bmatrix}f_x d(\theta) \frac{x}{r}原创 2025-01-05 14:49:04 · 129 阅读 · 0 评论 -
自适应旋转校准改善GPS-VIO融合方法
本文介绍了一种能够显著改善基于GPS和VIO框架之间旋转外参校准的新型GPS-VIO系统,这个外参数是可观测的,这一点通过非线性可观测性分析进行了证明,我们还在包括飞行无人机和行驶车辆在内的多种平台上对所提出的算法进行了广泛评估,实验结果支持可观测性分析,并显示相较于最先进的紧耦合算法,定位精度有所提高。在本文中,我们提出了一种新颖的基于滤波器的GPS-VIO系统,特别关注于在GPS框架和VIO之间包含可靠且准确的旋转外参估计。通过非线性可观测性分析证明了旋转外参是可观测的,并通过模拟结果支持这一结论。原创 2024-06-29 16:22:46 · 325 阅读 · 0 评论 -
用于智驾车辆的相机-IMU外参监控
同样,我们人为引入预标定的外参的位移。因此将特征点的集合缩小到道路上的静态点,并利用几何特性开发了一个多项式算法,通过不同的误差度量来识别这些不匹配,使用模拟数据和真实的KITTI数据集在具有挑战性的场景中的实验证明,我们的算法对于根据三个众所周知的误差度量(即Sampson误差、残差误差和对称极线距离)鲁棒地识别传感器校准质量差是有效的。使用了包含来自绕城市卡尔斯鲁厄(图6)行驶的车辆捕捉的各种街景的摄像头图像和IMU读数的KITTI数据集,以评估我们的相机到IMU外参监测算法在实际环境中的性能。原创 2024-01-12 09:29:47 · 179 阅读 · 0 评论 -
Mesh-LOAM:基于网格的实时激光雷达里程计和建图方案
在四个数据集上的实验结果证明了我们提出的方法在生成准确的运动轨迹和环境网格图方面的有效性。为了评估我们提出的方法的建图质量,将我们的方法与三种最先进的方法进行了比较,包括基于 TSDF 融合的方法 VDB Fusion、基于 Possion 回归的方法 Puma和基于学习的方法 SHINE-Mapping。本文采用了与 Puma和 SLAMesh类似的点对网格配准方法,可用于提高里程计精度,由于扫描帧到模型的匹配效果优于传统的扫描帧到扫描帧的匹配,我们的网格表示是通过连续累积的扫描帧计算得出的。原创 2024-01-12 09:29:04 · 242 阅读 · 0 评论 -
NeRF作者简述NeRF的历史与发展
文章:NeRFs: The Search for the Best 3D Representation作者:Ravi Ramamoorthi编辑:点云PCL欢迎各位加入知识星球,获取PDF论文,欢迎转发朋友圈。文章仅做学术分享,如有侵权联系删文。公众号致力于点云处理,SLAM,三维视觉,高精地图等领域相关内容的干货分享,欢迎各位加入,有兴趣的可联系dianyunpcl@163.com。侵权或转载联系微信cloudpoint9527。摘要神经辐射场(NeRF)已成为多视图合成或原创 2024-01-12 09:27:56 · 311 阅读 · 0 评论 -
ROS2入门之基本介绍
1)DDS内所有的成员都是Entity,DDS中的任两个Entity(实体角色)通信都必须在同一个Domain 内进行交互,即他们初始化时DomainID是同一个,并且不同Domain的DomainID必须唯一,Domain内的DomainParticipant是服务的入口点,任何DDS应用都需首先获取DomainParticipant,然后通过Domain Participant获取其他服务,如Publisher、Subscriber、Topic等。让我们一起分享一起学习吧!......原创 2022-08-14 10:18:36 · 1031 阅读 · 0 评论 -
【系列文章】面向自动驾驶的三维点云处理与学习(3)
标题:3D Point Cloud Processing and Learning for Autonomous Driving作者:Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, Carl Wellington编译:点云PCL来源:arXiv 2020本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。内容如有错误欢迎评论留言,未经允许请勿转载!公众号致力于分享点云处原创 2021-03-24 22:15:37 · 613 阅读 · 0 评论 -
VR/AR 领域深度报告
本文是一篇投资行业关于VR/AR 领域的行业分析调查报告的摘录,该报告发表于2020年6月份。本文仅从中摘录部分观点,仅做分享,如有侵权,请联系删除。有兴趣查看全文可在微信公众号后台发送“VR”获取电子版完整报告。核心观点VR/AR 行业拐点已现:VR/AR 在 2016 年经历过一次资本热,但是由于时机 不成熟,随后逐步降温。随着产业资本的不断投入,政策红利不断释放,以及 行业巨头在硬件、软件、内容、应用端不断发力,VR/AR 行业全方位得到了改 善,并且应用场景与 VR/AR 融合度不断提升原创 2021-03-16 20:29:34 · 504 阅读 · 0 评论 -
基于先验LIDAR点云地图的单目相机定位
点云PCL免费知识星球,点云论文速读。文章:Monocular Camera Localization in Prior LiDAR Maps with 2D-3D Line Correspondences作者:Huai Yu1;2, Weikun Zhen2, Wen Yang1, Ji Zhang2 and Sebastian Scherer编译:点云PCL来源:arXiv 2020欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。文章仅做学术分享,如有侵权联系删文。未经博主同意请勿擅原创 2021-03-16 20:29:14 · 570 阅读 · 0 评论 -
【系列文章】面向自动驾驶的三维点云处理与学习(2)
标题:3D Point Cloud Processing and Learning for Autonomous Driving作者:Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, Carl Wellington编译:点云PCL来源:arXiv 2020本文仅做学术分享,由于恶意举报,暂不能申请原创,本人翻译文章如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。内容如有错误欢迎评论留言,未原创 2021-03-06 15:03:12 · 635 阅读 · 0 评论 -
【系列文章】面向自动驾驶的三维点云处理与学习(1)
标题:3D Point Cloud Processing and Learning for Autonomous Driving作者:Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, Carl Wellington编译:点云PCL来源:arXiv 2020本文仅做学术分享,如有侵权,请联系删除。欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。内容如有错误欢迎评论留言,未经允许请勿转载!公众号致力于分享点云处原创 2021-03-06 15:01:12 · 1015 阅读 · 0 评论 -
VR/AR 领域深度报告
本文是一篇投资行业关于VR/AR 领域的行业分析调查报告的摘录,该报告发表于2020年6月份。本文仅从中摘录部分观点,仅做分享,如有侵权,请联系删除。有兴趣查看全文可在微信公众号后台发送“VR”获取电子版完整报告。核心观点VR/AR 行业拐点已现:VR/AR 在 2016 年经历过一次资本热,但是由于时机 不成熟,随后逐步降温。随着产业资本的不断投入,政策红利不断释放,以及 行业巨头在硬件、软件、内容、应用端不断发力,VR/AR 行业全方位得到了改 善,并且应用场景与 VR/AR 融合度不断提升原创 2021-03-06 14:59:43 · 1356 阅读 · 1 评论 -
基于先验LIDAR点云地图的单目相机定位
点云PCL免费知识星球,点云论文速读。文章:Monocular Camera Localization in Prior LiDAR Maps with 2D-3D Line Correspondences作者:Huai Yu1;2, Weikun Zhen2, Wen Yang1, Ji Zhang2 and Sebastian Scherer编译:点云PCL来源:arXiv 2020欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。文章仅做学术分享,如有侵权联系删文。未经博主原创 2021-03-01 21:31:05 · 701 阅读 · 1 评论 -
基于点线特征的激光雷达单目视觉里程计
摘要本文介绍了一种新颖的使用点和线的激光雷达+单目视觉的里程计方法。与以往的基于lidar+视觉里程计相比,通过在姿态估计中引入点和线特征来利用更多的环境结构信息。提出了一种稳健的点线特征深度提取方法,并将提取的深度值作为点线捆集平差法的先验因子。该方法大大降低了特征的三维模糊度,提高了姿态估计精度。此外,本文还提出了一种纯视觉运动跟踪方法和一种新的尺度校正方案,从而实现了一种高效、高精度的单目视觉里程计系统。对公开的 KITTI数据集的评估表明,该方法比最新的方法实现了更精确的姿态估计,有时甚至比那些利原创 2021-01-14 15:02:55 · 749 阅读 · 0 评论 -
立体视觉+惯导+激光雷达SLAM系统
摘要本文提出的立体视觉+惯导+激光雷达的SLAM系统,在比如隧道一些复杂场景下能够实现良好性能。VIL-SLAM通过将紧密耦合的立体视觉惯性里程计(VIO)与激光雷达建图和激光雷达增强视觉环路闭合相结合来实现这一目标。该系统实时生成环闭合校正的6自由度激光雷达姿态和接近实时的1cm体素稠密点云。与最先进的激光雷达方法相比,VIL-SLAM显示了更高的精确度和鲁棒性。主要内容系统有四个模块,如图2所示。视觉前端从立体摄像机获取立体图像。它执行帧到帧的跟踪和立体帧匹配,并输出立体匹配结果作为视觉测量。原创 2021-01-14 15:02:32 · 1329 阅读 · 0 评论 -
MonoRec:无需激光雷达,只需单个相机就可以实现三维场景的稠密重建
摘要在本文中,我们提出了MonoRec,一种半监督的单目密集重建架构,该方案可在动态环境中根据单个移动摄像机预测深度图。MonoRec提出了一种新型的多阶段训练方案,该方案可以不需要LiDAR深度值的半监督损失公式。在KITTI数据集上仔细评估了MonoRec,并表明与多视图和单视图方法相比,它具有最先进的性能。通过在KITTI上训练的模型,我们进一步证明了MonoRec能够很好地推广到牛津RobotCar数据集和手持摄像机记录的更具挑战性的TUM-Mono数据集上相关工作与主要贡献多视图立体视觉(M原创 2021-01-14 15:01:35 · 633 阅读 · 0 评论 -
PL-VINS:实时基于点线的单目惯导SLAM系统
摘要:利用线特征来提高基于点特征的视觉惯性SLAM(VINS)的定位精度越来越重要,因为它们提供了结构化场景中规则性的额外约束,然而,实时性能一直没有得到关注。本文介绍了PL-VINS,一种基于实时优化的具有点和线的单目VINS方法,它是在最新的基于点的VINS Mono的基础上发展起来的。观察到目前的工作是使用LSD算法来提取直线,但是LSD是为场景的形状结构表示而设计的,而不是针对特定的姿态估计问题,由于其昂贵的成本成为实时性能的瓶颈。本文通过对隐参数调整和长度抑制策略的研究,提出了一种改进的LSD算原创 2021-01-06 20:45:41 · 1625 阅读 · 1 评论 -
基于激光雷达增强的三维重建
摘要尽管运动恢复结构(SfM)作为一种成熟的技术已经在许多应用中得到了广泛的应用,但现有的SfM算法在某些情况下仍然不够鲁棒。例如,比如图像通常在近距离拍摄以获得详细的纹理才能更好的重建场景细节,这将导致图像之间的重叠较少,从而降低估计运动的精度。在本文中,我们提出了一种激光雷达增强的SfM流程,这种联合处理来自激光雷达和立体相机的数据,以估计传感器的运动。结果表明,在大尺度环境下,加入激光雷达有助于有效地剔除虚假匹配图像,并显著提高模型的一致性。在不同的环境下进行了实验,测试了该算法的性能,并与最新的S原创 2021-01-06 20:45:24 · 1084 阅读 · 0 评论 -
ROS与PCL中点云数据之间的转换
此为文章初稿还没有完善,应该还有一些问题,等待后面有时间再继续更新,原创文章,未经允许,请勿转载!!!首先介绍在PCL库中经常使用的两种点云之间的转换,这里将根据工程中的经验,从代码层面举例分析如何实现程序中定义的各种点云数据之间转换,并且介绍PCL在应用于ROS中应该如何转换数据结构。(1)pcl::PCLPointCloud2::Ptr 与 pcl::PointCloudpcl::PointXYZ之间的关系pcl::PointXYZ 是数据结构,pcl::PointCloud 是一个构造函数,比如原创 2020-08-24 22:55:22 · 1347 阅读 · 0 评论 -
PCL common中常见的基础功能函数
这里将分享我使用PCL库的遇到的一些坑,以及总结的技巧,当然也需要各位能够多多分享,将公众号的文章或者知识星球的文章转发到朋友圈。pcl_common中主要是包含了PCL库常用的公共数据结构和方法,比如PointCloud的类和许多用于表示点,曲面,法向量,特征描述等点的类型,用于计算距离,均值以及协方差,角度转换以及几何变化的函数。对于各种点,特征的类型的数据结构在这里就不再一一举例说明,这需要根据实际情况而定。这里主要介绍一下基本的常见的功能函数,这些函数其实用C++也可以自行实现,在PCL中提供原创 2020-07-05 15:41:09 · 1572 阅读 · 0 评论 -
【开源方案共享】无序点云快速的线段分割算法
点云PCL免费知识星球,点云论文速读。标题:Fast 3D Line Segment Detection From Unorganized Point Cloud作者:Xiaohu Lu, Yahui Liu, Kai Li编译:particle欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。本文提出了一种基于大规模无序点云的三维线段检测算法。与传统的方法先提取三维边缘点后在拟合三维线段的算法相比,本文提出了一种基于点云分割和二维线段检测的基础上,能够快速的实现三维线段检测算法。原创 2020-07-05 15:39:41 · 1250 阅读 · 0 评论 -
Kimera实时重建的语义SLAM系统
Kimera实时重建的语义SLAM系统Kimera是C++实现的一个具有实时度量的语义SLAM系统,使用的传感器有相机与IMU惯导数据来构建环境语义标注的3D网格,Kinera支持ROS运行在CPU上的高效模块化的开源方案。包含了四个模块:快速准确的视觉-惯导里程计VIO流水线(Kimera-VIO)基于鲁棒位姿的图优化完整SLAM实现(Kimera-RPGO)单帧和多帧3D网格生成器(Kimera-Mesher)语义标签的3D网格生成器(Kimera-Semantics)github:http原创 2020-06-02 22:33:58 · 1701 阅读 · 0 评论 -
SLAM综述(4)激光与视觉融合SLAM
分享SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。本系列文章主要分成四个部分:在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度原创 2020-05-24 22:26:26 · 6480 阅读 · 0 评论 -
基于点云强度的3D激光雷达与相机的外参标定
本文提出一种新颖的方法,可以对3D lidar和带有标定板的相机进行全自动的外参标定,提出的方法能够从lidar的每一帧点云数据中利用强度信息提取标定板的角点。通过激光的反射强度和棋盘格颜色之间的相关性的约束来优化将棋盘格分割的模型,所以一旦我们知道了3D 点云中棋盘的角点,那么两个传感器之间的外部校准就转换成了3D-2D的匹配问题。相应的3D-2D点计算两个传感器之间的绝对姿态一般使用的方法是UPnP,此外,将计算出来的参数作为初始值,并且使用LM优化方法进行完善,使用了仿真的方法评估了3D 点云中提取角原创 2020-05-24 22:20:54 · 2456 阅读 · 0 评论 -
【点云论文速读】最佳点云分割分析
点云PCL免费知识星球,点云论文速读。标题:Learning to Optimally Segment Point Clouds作者:Peiyun Hu, David Held星球ID:particle欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。●论文摘要我们提出了一种将图论搜索与数据驱动的学习相结合的方法:在一组候选分割中搜索综合目标性(objectness)评分较高的候选分割。我们证明了,如果根据分割中最低的目标性对分割进行评分,那么就有一种有效的算法可以在成倍数量的候原创 2020-05-24 22:17:51 · 1336 阅读 · 0 评论 -
【点云论文速读】点云高质量3D表面重建
点云PCL免费知识星球,点云论文速读。标题:Local Implicit Grid Representations for 3D Scenes作者:Chiyu “Max” Jiang1,2 Avneesh Sud星球ID:particle欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。●论文摘要从点云数据中学习的形状先验知识,通常应用在从局部或带有噪声的点云数据的三维重建。然而,由于典型的三维自动编码器无法处理其规模、复杂性或多样性,因此室内场景中没有这样的形状预测器。在本文中原创 2020-05-24 22:15:39 · 2725 阅读 · 1 评论 -
HoPE杂乱场景的点云数据平面的提取
点云PCL免费知识星球,点云论文速读。标题:HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes作者:Dong, Zhipeng and Gao, Yi and Zhang, Jinfeng and Yan星球ID:particle欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。●论文摘要在杂乱的三维场景中提取水平面是许多机器人应用的基本步骤。针对一般平面分割方法在这一问题上的局限性,我们提出了一种新的平面提取的算法,原创 2020-05-24 22:12:04 · 1065 阅读 · 0 评论 -
点云配准资源汇总
点云配准的目标是根据原始点云和目标点云,通过配准求出变换矩阵,即旋转矩阵R和平移矩阵T,并计算误差,来比较匹配结果。主要有以下几种比较基于局部特征描述子(PFH、FPFH、3Dsc,Shot等等);icp配准 ;基于概率分布 (NDT);配准的一般步骤:提取关键点特征描述一致性估计(以上可以概括为粗配准)精配准误差分析注意:配准中,由于不同点云数据集的特性,需要提取不同关键点。demo展示汇总ICP资源1,FilterReg: Robust and Efficient Prob原创 2020-05-24 22:09:15 · 1910 阅读 · 0 评论 -
SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM
SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。本系列文章主要分成四个部分:在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以原创 2020-05-24 22:05:32 · 2185 阅读 · 0 评论 -
【点云论文速读】6D位姿估计
点云PCL免费知识星球,点云论文速读。标题:MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion作者:Kentaro Wada, Edgar Sucar, Stephen James星球ID:wl_华科_点云处理_目标识别欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。●论文摘要机器人与其他智能设备需要根据自身搭载的视觉系统实现高效的目标级场景表达以进行接触、物理、遮挡等原创 2020-05-24 21:54:42 · 3026 阅读 · 0 评论 -
【点云论文速读】点云分层聚类算法
点云PCL免费知识星球,点云论文速读。标题:PAIRWISE LINKAGE FOR POINT CLOUD SEGMENTATION作者:Lu, Xiaohu and Yao, Jian and Tu星球ID:Lionheart|点云配准欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。●论文摘要这篇文章中,我们首次提出一种新颖的分层聚类算法----pairwise Linkage(p-linkage),能够用来聚类任意维度的数据,然后高效的应用于3D非结构点云的分类中,P-l原创 2020-05-24 21:51:28 · 2839 阅读 · 0 评论 -
点云深度学习的Pytorch框架
这是3D 点云的深度学习框架,提供常见的点云分析方法的一种通用深度学习模型。它主要依赖Pytorch Geometric和Facebook Hydra。该框架能够以最小的代价和极大的可重复性来构建精简而复杂的模型。目标是建立一个工具,用于对SOTA模型进行基准测试,同时允许研究者们有效地研究点云分析,最终目标是建立可应用于实际应用的模型。代码已经开源 https://github.com/nicolas-chaulet/torch-points3d(最近似乎又更新了)工程结构作为一种函数库,所以原创 2020-05-08 21:35:33 · 2610 阅读 · 3 评论 -
易扩展的SLAM框架-OpenVSLAM
本文介绍了一种具有较高可用性和可扩展性的可视化SLAM框架——OpenVSLAM。视觉SLAM系统对于AR设备、机器人和无人机的自主控制等是必不可少的。然而,传统的开源视觉SLAM框架并没有像从第三方程序调用的库那样进行适当的设计。为了克服这种情况,我们开发了一个新的视觉SLAM框架。该软件设计简单,易于使用和扩展。它包含了一些有用的特性和功能,用于研究和开发。OpenVSLAM发布于https://github.com/xdspacelab/OpenVSLAM详细介绍与对比在介绍中文章高度肯定了.原创 2020-05-08 21:31:22 · 1296 阅读 · 0 评论 -
SLAM综述(2)-视觉SLAM
SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。本系列文章主要分成四个部分:在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以原创 2020-05-08 21:26:13 · 930 阅读 · 0 评论 -
SLAM综述之Lidar SLAM
SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。本系列文章主要分成四个部分:在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以原创 2020-05-08 21:24:03 · 4017 阅读 · 0 评论 -
3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)
文章由公众号“点云PCL”成员闫守志同学提供,这里做个转载,有兴趣的可以查看他的原文https://blog.csdn.net/weixin_43199584/article/details/105256192西班牙Zaragoza大学的研究人员提出的最新3D点云语义分割的深度学习方法,网络分为两大部分,提出新的滑动框搜索球形投影后的“像素点”,接着使用改进的MiniNetV2网络进行分割,然后将带着标签数据的点反投影回3D点云,最后加入后处理过程,网络结构比较清晰。发布的两个不同参数大小的网络在eman转载 2020-05-08 21:19:59 · 2592 阅读 · 0 评论 -
高精地图:为自动驾驶汽车提供动力的新时代地图
专为自动驾驶而构建的地图通常称之为高精地图(High Definition Maps),这些地图在厘米级别,一般具有极高的精度,阅读本文将了解有关高精地图的一些基本内容。你将了解到高精地图的定义,为什么自动驾驶需要高精地图,如何制作高精地图,高精地图如何存储,等等基本问题,对高精地图有着全面且基础的认识。什么是高清地图?高精地图是指就是精度更高的,数据维度更多的电子地图,精度高一般是指在厘米...原创 2020-04-07 19:00:36 · 912 阅读 · 0 评论 -
win下使用QT添加VTK插件实现点云可视化GUI
摘要大家在做点云的时候经常会用到QT,但是我们需要使用QT做点云的可视化的时候又需要VTK,虽然我们在windows下安装PCL的时候就已经安装了VTK,由于跟着PCL安装的VTK是没有和QT联合编译的,所以在使用PCL和QT做点云可视化界面的时候是无法使用可是QT的插件QVTKWidget,本文将主要讲解一些PCL在Ubuntu系统和windows使用QT做界面的一些分享。ubuntu 中...原创 2020-04-07 18:51:56 · 2544 阅读 · 0 评论 -
线上分享会预告之深度学习在3D场景中的应用
大家好。上周我们迎来了第一期的线上分享,三维模型检索技术介绍,此次分享是一次接力形式的分享,每周都将有一位主讲人分享,希望更多的小伙伴加入我们一起分享,也是给自己一个机会锻炼。这里先预告一下,线上直播的时间在本周三晚上19:30,大家多多关注。本周线上分享会预告主讲题目:深度学习在3D场景中的应用主题内容介绍3D场景中的主要任务和点云数据使用中存在的挑战。介绍目前深度学习在点云数据中的使...原创 2020-02-25 11:13:39 · 387 阅读 · 1 评论 -
点云表面法向量的估计
点云表面法向量是一种重要几何表面特性,在计算机图像学中有很广的应用,例如在进行光照渲染和其他可视化效果时确定一个合理的光源位置。通过已知的确定几何表面来估计表面法向量通常并没有什么难度。但通过一组实际获取的真实表面点云数据来进行相应的法向量估计,通常有两种方案:使用表面重建技术,针对获取的点运数据集,从网格化后的重建表面上估计法向量。直接从点云数据中估计法向量。直接从点云数据中获取法向量的...原创 2020-01-21 19:38:55 · 3000 阅读 · 1 评论