java中的随机数Random

部分摘录自

http://lehsyh.iteye.com/blog/646658

java中一般有两种随机数,一个是Math中random()方法,一个是Random类。

 

一、Math.random()

随即生成0<x<1的小数。

实例:如何写,生成随机生成出0~100中的其中一个数呢?

    Math.random()返回的只是从0到1之间的小数,如果要50到100,就先放大50倍,即0到50之间,这里还是小数,如果要整数,就强制转换int,然后再加上50即为50~100.
最终代码:(int)(Math.random()*50) + 50

public class Mathrandom {
		public static void main(String args[])
		{
			for(int i=1;i<=10;i++)
			System.out.println((int)(Math.random()*50+50));
		}
}

可以见到Math这个类是在java.lang.Math;引入的 

java.lang包是唯一的,它被自动引入每个java程序,所以不必import

类似的还有java.lang.String;.............

另外可以看出int其实就是向下取整的作用。

二、Random类

Random random = new Random();//默认构造方法

Random random = new Random(1000);//指定种子数字

在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的变换,从而产生需要的随机数字。

相同种子数的Random对象,相同次数生成的随机数字是完全相同的。也就是说,两个种子数相同的Random对象,第一次生成的随机数字完全相同,第二次生成的随机数字也完全相同。

二、Random类

Random random = new Random();//默认构造方法

Random random = new Random(1000);//指定种子数字

在进行随机时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的变换,从而产生需要的随机数字。

相同种子数的Random对象,相同次数生成的随机数字是完全相同的。也就是说,两个种子数相同的Random对象,第一次生成的随机数字完全相同,第二次生成的随机数字也完全相同。

 

2 、Random类中的常用方法

Random 类中的方法比较简单,每个方法的功能也很容易理解。需要说明的是,Random类中各方法生成的随机数字都是均匀分布的,也就是说区间内部的数字生成的几率是均等的。下面对这些方法做一下基本的介绍:

a 、public boolean nextBoolean()

该方法的作用是生成一个随机的boolean值,生成true和false的值几率相等,也就是都是50%的几率。

b 、public double nextDouble()

该方法的作用是生成一个随机的double值,数值介于[0,1.0)之间,这里中括号代表包含区间端点,小括号代表不包含区间端点,也就是0到1之间的随机小数,包含0而不包含1.0。

 

c 、public int nextInt()

该方法的作用是生成一个随机的int值,该值介于int的区间,也就是-2的31次方到2的31次方-1之间。

如果需要生成指定区间的int值,则需要进行一定的数学变换,具体可以参看下面的使用示例中的代码。

d 、public int nextInt(int n)

该方法的作用是生成一个随机的int值,该值介于[0,n)的区间,也就是0到n之间的随机int值,包含0而不包含n。

如果想生成指定区间的int值,也需要进行一定的数学变换,具体可以参看下面的使用示例中的代码。

e 、public void setSeed(long seed)

该方法的作用是重新设置Random对象中的种子数。设置完种子数以后的Random对象和相同种子数使用new关键字创建出的Random对象相同。

3 、Random类使用示例

使用Random类,一般是生成指定区间的随机数字,下面就一一介绍如何生成对应区间的随机数字。以下生成随机数的代码均使用以下Random对象r进行生成:

Random r = new Random();

a 、生成[0,1.0)区间的小数

 double d1 = r.nextDouble();
直接使用nextDouble方法获得。

b、生成[0,5.0)区间的小数

double d2 = r.nextDouble() * 5;

因为nextDouble方法生成的数字区间是[0,1.0),将该区间扩大5倍即是要求的区间。

 

同理,生成[0,d)区间的随机小数,d为任意正的小数,则只需要将nextDouble方法的返回值乘以d即可。

c、生成[1,2.5)区间的小数  [n1,n2]

       double d3 = r.nextDouble() * 1.5 + 1;【也就是 r.nextDouble() * (n2-n1)+n1】

生成[1,2.5)区间的随机小数,则只需要首先生成[0,1.5)区间的随机数字,然后将生成的随机数区间加1即可。

同理,生成任意非从0开始的小数区间[d1,d2)范围的随机数字(其中d1不等于0),则只需要首先生成[0,d2-d1)区间的随机数字,然后将生成的随机数字区间加上d1即可。

d、生成任意整数

int n1 = r.nextInt();

直接使用nextInt方法即可。

e、生成[0,10)区间的整数

int n2 = r.nextInt(10);

n2 = Math.abs(r.nextInt() % 10);

以上两行代码均可生成[0,10)区间的整数。

第一种实现使用Random类中的nextInt(int n)方法直接实现。

第二种实现中,首先调用nextInt()方法生成一个任意的int数字,该数字和10取余以后生成的数字区间为(-10,10),因为按照数学上的规定余数的绝对值小于除数,然后再对该区间求绝对值,则得到的区间就是[0,10)了。

同理,生成任意[0,n)区间的随机整数,都可以使用如下代码:

int n2 = r.nextInt(n);

n2 = Math.abs(r.nextInt() % n);

f、生成[0,10]区间的整数

int n3 = r.nextInt(11);

n3 = Math.abs(r.nextInt() % 11);

相对于整数区间,[0,10]区间和[0,11)区间等价,所以即生成[0,11)区间的整数。

g、生成[-3,15)区间的整数

int n4 = r.nextInt(18) - 3;   【也就是 r.nextInt() * (n2-n1)+n1】 n1是个负数

n4 = Math.abs(r.nextInt() % 18) - 3;    

生成非从0开始区间的随机整数,可以参看上面非从0开始的小数区间实现原理的说明。

import java.util.Random;


public class Randomlei {
      public static void main(String args[])
      {
    	  Random r = new Random();
    	
    	  for(int i=1;i<=10;i++)
    		  System.out.print(r.nextInt(10)+" ");
    	  System.out.println();
    	  
    	  for(int i=1;i<=10;i++)
    		  System.out.print(r.nextInt(11)+" ");
    	  
    	  System.out.println();
    	
    	  Random r1 = new Random();
      	
    	  for(int i=1;i<=10;i++)
    		  System.out.print(r1.nextDouble()+" ");
    	  System.out.println();
    	  
    	  for(int i=1;i<=10;i++)
    		  System.out.print(r1.nextDouble()*5+" ");
      }
}

还可以看出Random这个类在java.util.Random当中



众所周知,随机数是任何一种编程语言最基本的特征之一。而生成随机数的基本方式也是相同的:产生一个0到1之间的随机数。看似简单,但有时我们也会忽略了一些有趣的功能。 我们从书本上学到什么? 最明显的,也是直观的方式,在Java生成随机数只要简单的调用: 1.java.lang.Math.random() 在所有其他语言,生成随机数就像是使用Math工具类,如abs, pow, floor, sqrt和其他数学函数。大多数人通过书籍、教程和课程来了解这个类。一个简单的例子:从0.0到1.0之间可以生成一个双精度浮点数。那么通过上面的信息,开发人员要产生0.0和10.0之间的双精度浮点数会这样来写: 1.Math.random() * 10 而产生0和10之间的整数,则会写成: 1.Math.round(Math.random() * 10) 进阶 通过阅读Math.random()的源码,或者干脆利用IDE的自动完成功能,开发人员可以很容易发现,java.lang.Math.random()使用一个内部的随机生成对象 - 一个很强大的对象可以灵活的随机产生:布尔值、所有数字类型,甚至是高斯分布。例如: 1.new java.util.Random().nextInt(10) 它有一个缺点,就是它是一个对象。它的方法必须是通过一个实例来调用,这意味着必须先调用它的构造函数。如果在内存充足的情况下,像上面的表达式是可以接受的;但内存不足时,就会带来问题。 一个简单的解决方案,可以避免每次需要生成一个随机数时创建一个新实例,那就是使用一个静态类。猜你可能想到了java.lang.Math,很好,我们就是改良java.lang.Math的初始化。虽然这个工程量低,但你也要做一些简单的单元测试来确保其不会出错。 假设程序需要生成一个随机数来存储,问题就又来了。比如有时需要操作或保护种子(seed),一个内部数用来存储状态和计算下一个随机数。在这些特殊情况下,共用随机生成对象是不合适的。 并发 在Java EE多线程应用程序的环境,随机生成实例对象仍然可以被存储在类或其他实现类,作为一个静态属性。幸运的是,java.util.Random是线程安全的,所以不存在多个线程调用会破坏种子(seed)的风险。 另一个值得考虑的是多线程java.lang.ThreadLocal的实例。偷懒的做法是通过Java本身API实现单一实例,当然你也可以确保每一个线程都有自己的一个实例对象。 虽然Java没有提供一个很好的方法来管理java.util.Random的单一实例。但是,期待已久的Java 7提供了一种新的方式来产生随机数: 1.java.util.concurrent.ThreadLocalRandom.current().nextInt(10) 这个新的API综合了其他两种方法的优点:单一实例/静态访问,就像Math.random()一样灵活。ThreadLocalRandom也比其他任何处理高并发的方法要更快。 经验 Chris Marasti-Georg 指出: 1.Math.round(Math.random() * 10) 使分布不平衡,例如:0.0 - 0.499999将四舍五入为0,而0.5至1.499999将四舍五入为1。那么如何使用旧式语法来实现正确的均衡分布,如下: 1.Math.floor(Math.random() * 11) 幸运的是,如果我们使用java.util.Randomjava.util.concurrent.ThreadLocalRandom就不用担心上述问题了。 Java实战项目里面介绍了一些不正确使用java.util.Random API的危害。这个教训告诉我们不要使用: 1.Math.abs(rnd.nextInt())%n 而使用: 1.rnd.nextInt(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值