问题描述:
最大子段和问题是将一个n个整数的序列a[1],a[2]….a[n]中字段a[first]….a[last]之和,(1<=first<=last<=n)求这些子段和中最大的。
例如(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20,子段为a[2],a[3],a[4]。
求解方法:
如果不会算法,那就用时间复杂度为O(n^3)的枚举,i为从1到n的起点,j为从i到n的终点,k为从i到j的子段之和。
还是枚举,改进一下,得到O(n^2)的枚举算法,就是将k去掉,在找其终点j的时候就将子段和记录下来,因为从i到j的子段和就是从i到j-1的子段和加上a[j]。
再改进一下,将这个序列分成1到(1+n)/2的序列与(1+n)/2到n的序列。那么最大的子段有可能出现在:
1.左侧序列。2.右侧序列。3.跨越中间点的序列。
我们从中间点两侧找最大子段,再找越过中间点的最大子段,就形成了我们所说的分治算法,得到复杂度为O(nlogn)的算法。
其实,我们在选择一个元素a[j]的时候,只有两种情况,将a[i]至a[j-1]加上,或者从a[j]以j为起点开始。我们用一个数组dp[i]表示以i为结束的最大子段和,对于每一个a[i],加上dp[i-1]成为子段,或以a[i]开始成为新段的起点。因为我们只需要记录dp值,所以复杂度是O(n)。
这就是最大子段和的动态规划算法。
我们甚至不需要dp数组,只需要定义一个dp变量,因为最后要求的dp值也是最大的,所以我们可以在求dp的时候更新为最大的。
代码如下:
51nod1049 标准题
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
int main()
{
int n;
long long a[50005];
//long long dp[50005];
while(scanf("%d",&n)!=-1)
{
for(int i=0; i<n; i++)
{
scanf("%lld",&a[i]);
}
//memset(dp,0,sizeof(dp));
long long ans=0,dp=0;
for (int i=0; i<n; i++)
{
if(dp>0)
dp+=a[i];
else
dp=a[i];
if(dp>ans)
ans=dp;
}
cout<<ans<<endl;
}
return 0;
}
hdu 1003 要求起点和终点的最大子段和问题
采用dp数组寻找起点终点
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
int main()
{
int n;
int T;
long long a[100005];
long long dp[100005];
scanf("%d",&T);
for(int t=1; t<=T; t++)
{
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%lld",&a[i]);
}
memset(dp,0,sizeof(dp));
dp[0]=a[0];
for(int i=1; i<n; i++)
{
if (dp[i-1]>=0) dp[i]=dp[i-1]+a[i];
else dp[i]=a[i];
}
int start=0,end=0,ans=a[0];
for(int i=1; i<n; i++)
{
if (ans<dp[i])
{
ans=dp[i];
end=i;
}
}
start=end;
for(int i=start-1; i>=0; i--)
{
if (dp[i]>=0) start=i;
else break;
}
printf("Case %d:\n",t);
printf("%d %d %d\n",ans,start+1,end+1);
if (t<T) printf("\n");
}
return 0;
}
在找最优值的时候记录两个端点位置:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
using namespace std;
const int maxn=110;
int a[maxn];
int n;
int maxsum(int n, int *a, int &left,int &right)
{
int ret=0;
int dp=0;
int l=0,r=0;
for(int i=0; i<n; i++)
{
if (dp>0) {dp+=a[i]; r++;}
else {dp=a[i]; l=i; r=l;}
if (dp>=ret)
{
ret=dp;
left=l;
right=r;
}
}
return ret;
}
int main()
{
while(scanf("%d",&n)!=-1)
{
for(int i=0; i<n; i++) scanf("%d",&a[i]);
int left=-1,right=-1;//-1表示没有子段可以取
int ans=maxsum(n,a,left,right);
printf("最大子段和为%d 起始位置为%d 终止位置为%d\n",ans,left,right);
}
return 0;
}