赫夫曼树

赫夫曼树:最优二叉树

赫夫曼树定义了一个WPL值,这个值等于所有叶子节点的带权路径之和。
例如:下面的三个树,我们可以分别计算出他们的WPL值。
我们可以看到不同的树结构,对应了不同的WPL值,我们把WPL值最小的树称为赫夫曼树。
从第二张图,我们可以看出权值越大的节点离根节点越近,越小的节点离根节点越远。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

赫夫曼树的构造

对于这个数组,我们把它构造成赫夫曼树

[5,29,7,8,14,23,3,11]

第一步:我们创建节点类,这些值作为节点的权值,存储在集合里。
在这里插入图片描述

第二步:将这些节点按照权值的大小进行排序。
在这里插入图片描述

第三步:取出权值最小的两个节点,并创建一个新的节点作为这两个节点的父节点,这个父节点的权值为两个子节点的权值之和。将这两个节点分别赋给父节点的左右节点。
在这里插入图片描述
第四步:删除这两个节点,将父节点添加进集合里。
在这里插入图片描述
第五步:重复第二步到第四步,直到集合中只剩一个元素,结束循环。

在这里插入图片描述

代码实现

package com.wuxudong.HuffmanTree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {
    public static void main(String[] args) {
        int [] arr=new int[]{8,11,23,29,14,7,3,5};

        Node node=huffman(arr);
        node.frontShow();
    }

    private static Node huffman(int[] arr) {
        //创建一个集合存储二叉数
        List<Node> nodes=new ArrayList<Node>();

        for (int value:arr){
            nodes.add(new Node(value));
        }

        while (nodes.size()>1) {
            //对集合进行排序
            Collections.sort(nodes);
            //取出最小的节点
            Node left=nodes.get(nodes.size()-1);

            //取出次小的节点
            Node right=nodes.get(nodes.size()-2);

            //新建一个根节点
            Node parent=new Node(left.value+right.value);
            parent.left=left;
            parent.right=right;

            //删除两个节点
            nodes.remove(left);
            nodes.remove(right);

            //将根节点添加进集合中
            nodes.add(parent);

        }


        return nodes.get(0);

    }


}

package com.wuxudong.HuffmanTree;

public class Node implements Comparable<Node>{
    int value;
    Node left;
    Node right;
    public Node(int value){
        this.value=value;
    }

    public int compareTo(Node o) {
        return -(this.value-o.value);
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //前序遍历
    public  void frontShow(){
        System.out.println(value);
        if(left!=null){
            left.frontShow();
        }
        if (right!=null){
            right.frontShow();
        }
    }
}

  • 17
    点赞
  • 4
    评论
  • 52
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

//算法5.11 根据赫夫曼树夫曼编码 #include<iostream> using namespace std; typedef struct { int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char **HuffmanCode; void Select(HuffmanTree HT,int len,int &s1,int &s2) { int i,min1=0x3f3f3f3f,min2=0x3f3f3f3f;//先赋予最大值 for(i=1;i<=len;i++) { if(HT[i].weight<min1&&HT[i].parent==0) { min1=HT[i].weight; s1=i; } } int temp=HT[s1].weight;//将原值存放起来,然后先赋予最大值,防止s1被重复选择 HT[s1].weight=0x3f3f3f3f; for(i=1;i<=len;i++) { if(HT[i].weight<min2&&HT[i].parent==0) { min2=HT[i].weight; s2=i; } } HT[s1].weight=temp;//恢复原来的值 } //用算法5.10构造赫夫曼树 void CreatHuffmanTree(HuffmanTree &HT,int n) { //构造赫夫曼树HT int m,s1,s2,i; if(n<=1) return; m=2*n-1; HT=new HTNode[m+1]; //0号单元未用,所以需要动态分配m+1个单元,HT[m]表示根结点 for(i=1;i<=m;++i) //将1~m号单元中的双亲、左孩子,右孩子的下标都初始化为0 { HT[i].parent=0; HT[i].lchild=0; HT[i].rchild=0; } cout<<"请输入叶子结点的权值:\n"; for(i=1;i<=n;++i) //输入前n个单元中叶子结点的权值 cin>>HT[i].weight; /*――――――――――初始化工作结束,下面开始创建赫夫曼树――――――――――*/ for(i=n+1;i<=m;++i) { //通过n-1次的选择、删除、合并来创建赫夫曼树 Select(HT,i-1,s1,s2); //在HT[k](1≤k≤i-1)中选择两个其双亲域为0且权值最小的结点, // 并返回它们在HT中的序号s1和s2 HT[s1].parent=i; HT[s2].parent=i; //得到新结点i,从森林中删除s1,s2,将s1和s2的双亲域由0改为i HT[i].lchild=s1; HT[i].rchild=s2 ; //s1,s2分别作为i的左右孩子 HT[i].weight=HT[s1].weight+HT[s2].weight; //i 的权值为左右孩子权值之和 } //for } // CreatHuffmanTree void CreatHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int n) { //从叶子到根逆向求每个字符的夫曼编码,存储在编码表HC中 int i,start,c,f; HC=new char*[n+1]; //分配n个字符编码的头指针矢量 char *cd=new char[n]; //分配临时存放编码的动态数组空间 cd[n-1]='\0'; //编码结束符 for(i=1;i<=n;++i) { //逐个字符求夫曼编码 start=n-1; //start开始时指向最后,即编码结束符位置 c=i; f=HT[i].parent; //f指向结点c的双亲结点 while(f!=0) { //从叶子结点开始向上回溯,直到根结点 --start; //回溯一次start向前指一个位置 if(HT[f].lchild==c) cd[start]='0'; //结点c是f的左孩子,则生成代码0 else cd[start]='1'; //结点c是f的右孩子,则生成代码1 c=f; f=HT[f].parent; //继续向上回溯 } //求出第i个字符的编码 HC[i]=new char[n-start]; // 为第i 个字符编码分配空间 strcpy(HC[i], &cd[start]); //将求得的编码从临时空间cd复制到HC的当前行中 } delete cd; //释放临时空间 } // CreatHuffanCode void show(HuffmanTree HT,HuffmanCode HC) { for(int i=1;i<=sizeof(HC)+1;i++) cout<<HT[i].weight<<"编码为"<<HC[i]<<endl; } void main() { HuffmanTree HT; HuffmanCode HC; int n; cout<<"请输入叶子结点的个数:\n"; cin>>n; //输入赫夫曼树的叶子结点个数 CreatHuffmanTree(HT,n); CreatHuffmanCode(HT,HC,n); show(HT,HC); }
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值