题意:
汗诺塔问题。
改成4个柱子了,解法已经在题目中给定。
思路:
其实就两个状态方程:
dp3[i]=2*dp3[i-1]+1;
dp4[i]=Min(dp4[i],2*dp4[k]+dp3[i-k]);
ps:什么我觉得linux下的csdn博客编辑比windows下的好看多了。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=15;
const int inf=(1<<30);
int n,m;
int dp3[N];
int dp4[N];
void solve()
{
n=12;
dp3[1]=1;
dp4[1]=1;
for(int i=2;i<=n;i++)
{
dp3[i]=2*dp3[i-1]+1;
dp4[i]=inf;
}
for(int i=2;i<=n;i++)
{
for(int k=1;k<i;k++)
{
dp4[i]=Min(dp4[i],2*dp4[k]+dp3[i-k]);
}
}
for(int i=1;i<=n;i++)
printf("%d\n",dp4[i]);
}
int main()
{
solve();
return 0;
}