动态规划之五:背包问题(共二题)

第一题:
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
输入格式:
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式:
输出一个整数,表示最大价值。
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
8

dp[i][j]定义为:[0--i]的物体当中,容量为j时,可以放进的最大价值。

状态转移方程:
if j >= vi[i - 1]: # 如果背包容量j比第i个物体的体积大:
	# 选择了第i个物体   dp[i][j] = dp[i - 1][j - vi[i - 1]] + wi[i - 1]
	# 没有选择第i个物体 dp[i][j] = dp[i - 1][j]
	dp[i][j] = max(dp[i - 1][j - vi[i - 1]] + wi[i - 1], dp[i - 1][j])
else: # 如果背包容量j比第i个物体的体积小:
	# 没有选择第i个物体 dp[i][j] = dp[i - 1][j]
	dp[i][j] = dp[i-1][j]

代码如下:
def getMaxValue(vi, wi, N, V):
    if N == 0 or V == 0 : return 0
    dp = [ [0]*(V+1) for i in range(N+1) ]
    for i in range(1, len(dp)):
        for j in range(1, len(dp[0])):
            if j >= vi[i - 1]:
                dp[i][j] = max(dp[i - 1][j - vi[i - 1]] + wi[i - 1], dp[i - 1][j])
            else:
                dp[i][j] = dp[i - 1][j]
    return dp[-1][-1]
    
while 1:
    try:
        sN, sV = input().strip().split()
        N, V = int(sN), int(sV)
        vi, wi = [], []
        for i in range(N):
            sv, sw = input().strip().split()
            if int(sv) <= V: 
                vi.append(int(sv))
                wi.append(int(sw))
        print(getMaxValue(vi, wi, N, V))
    except:
        break
        
如果你把状态定义为:
dp[i][j]定义为:容量为i时,在[0--j]的物体当中,可以放进的最大价值。
函数getMaxValue就是如下的写法:
def getMaxValue(vi, wi, N, V):
    if N == 0 or V == 0 : return 0
    dp = [ [0]*(N+1) for i in range(V+1) ]
    
    for i in range(1, len(dp)):
        for j in range(1, len(dp[0])):
            if i >= vi[j-1]:
                dp[i][j] = max(dp[i - vi[j-1]][j-1] + wi[j-1], dp[i][j - 1])
            else:
                dp[i][j] = dp[i][j - 1]
    return dp[-1][-1]

第二题:(与第一题,就一点不同。“每种物品都有无限件可用”)
有 N 件物品和一个容量是 V 的背包。每种物品都有无限件可用。第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
输入格式:
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式:
输出一个整数,表示最大价值。
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
10

dp[i]定义为:容量为i时,可以放进的最大价值。

如果dp[i]包含物体0,且物体0体积小于i:dp[i] = max( dp[i], dp[i - vi[0]] + wi[0] )
如果dp[i]包含物体1,且物体1体积小于i:dp[i] = max( dp[i], dp[i - vi[1]] + wi[1] )
如果dp[i]包含物体2,且物体2体积小于i:dp[i] = max( dp[i], dp[i - vi[2]] + wi[2] )
.........
.........
状态转移方程:
for j in range(len(v1)):
	if i >= vi[j]:
		dp[i] = max( dp[i], dp[i - vi[j]] + wi[j] )

代码如下:
def getMaxValue(vi, wi, V):
    if V == 0 : return 0
    dp = [ 0 for i in range(V+1) ]
    for i in range(1, len(dp)):
        for j in range(len(vi)):
            if i >= vi[j]:
                dp[i] = max( dp[i], dp[i - vi[j]] + wi[j] )
    return dp[-1]
    
while 1:
    try:
        sN, sV = input().strip().split()
        N, V = int(sN), int(sV)
        vi, wi = [], []
        for i in range(N):
            sv, sw = input().strip().split()
            if int(sv) <= V: 
                vi.append(int(sv))
                wi.append(int(sw))
        print(getMaxValue(vi, wi, V))
    except:
        break

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值