01背包问题:有n个物体,每个物体的价格为Wi,容量为Ci,有一个容积为V的背包,求放入背包的物体的价格的最大值。
1、状态转移方程:f(i)=max{f(i-1,v),f(i-1,v-Ci)+Wi}
意思是:当取第i个物体的时候,有放和不放两种选择,如果不放,就是维持i-1的状态,价值还是f(i-1,v),如果放,背包的容积减少Ci,价值增加Wi,也就得到了状态转移方程。
for(1->n)
for(v->ci)
f(i,vi)=max{f(i-1,v),f(i-1,v)+wi}
从体积V开始减少,保证了不会超过V,从1开始,保证了每次不会选取选取过的物品。
下面是用二维数组的实现
#include<bits/stdc++.h>
using namespace std;
int dp[105][105];
int value[105];
int weight[105];
int main(void)
{
int n,m,i,j;
scanf("%d%d",&m,&n);
for(i=1;i<=n;i++)
scanf("%d%d",&weight[i],&value[i]);
for(i=1;i<=n;i++) //从1到n列举背包
{
for(j=0;j<=m;j++) //不超过背包限度m
{
if(j>=weight[i]) //可以放的下
dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
else dp[i][j]=dp[i-1][j]; //放不下
}
}
printf("%d\n",dp[n][m]);
return 0;
}
其实还可以用一维数组滚动实现
#include<bits/stdc++.h>
using namespace std;
int weight[1005],cost[1005],dp[1005];
int main(void)
{
int m,n,i,j;
scanf("%d%d",&m,&n);
for(i=1;i<=n;i++)
scanf("%d%d",&weight[i],&cost[i]);
for(i=1;i<=n;i++)
{
for(j=m;j>=weight[i];j--)
{
dp[j]=max(dp[j],dp[j-weight[i]]+cost[i]);
}
}
printf("%d\n",dp[m]);
return 0;
}
注意:1到n的顺序可以变换,但m到weight[i]是确定了不超过背包的限度,不能变(是逆序,而完全背包是正序)
完全背包问题:有无限多个物体,背包的体积是v,有n种物品,每种物品的价值是Wi,体积是Ci,求在不超过背包容积的情况下背包中物品价格的最大值。
2、状态转移方程:f(i,V)=max{f(i-1,V-k*Ci)+k*Wi|0<=V<=k*Ci};
思路与01背包问题类似,但有些变化:1、物品的数量是无限的,也就是只要选择性价比最高的物品,求出每个物体的性价比,就是Vi/Ci,这种情况下,也可能某种物品被取光,也有可能某种物品不背取;2、还需要考虑一个物体的Ci如果大于V,不论性价比如何高,都不可取。
for(V->ci)
f(i,Vi)=max{f(i-1,Vi),f(i-1,Vi-Ci)+Wi};
从V开始减少,类似于01背包,每次减少Ci,选取最大的值。
#include<bits/stdc++.h>
using namespace std;
struct Node{
int weight,value;
};
Node p[120];
int dp[120];
int main(void)
{
int n,i,m,j;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
scanf("%d%d",&p[i].weight,&p[i].value);
for(i=1;i<=n;i++)
{
for(j=p[i].weight;j<=m;j++) //每次不超过背包限度
{
dp[j]=max(dp[j],dp[j-p[i].weight]+p[i].value);
}
}
printf("%d\n",dp[m]);
return 0;
}
多重背包
问题描述:有一个体积是V的背包,第i种物体有Mi件,每件的价值是Wi,占的体积是Ci,求在不超过背包体积的情况下,
最多的价值
状态转移方程:f(i,vi)=max{f(i-1,vi),f(i-1,vi-k*Ci)+k*Wi(0<=k<=Mi)};
(像极了01背包与完全背包的综合体。)
可以二进制优化
#include<bits/stdc++.h>
using namespace std;
int value[1200];
int weight[1200];
int dp[1200];
int main(void)
{
int i,j,num=1,n,V;
int vi,ci,wi;
scanf("%d%d",&n,&V);
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&vi,&ci,&wi);
for(j=1;j<=ci;j*=2) //二进制优化
{
value[num]=j*vi;
weight[num++]=j*wi;
ci-=j;
}
if(ci>0)
{
value[num]=ci*vi;
weight[num++]=ci*wi;
}
}
for(i=1;i<num;i++) //依次查找
{
for(j=V;j>=weight[i];j--) //找到重量最大的
if(dp[j]<dp[j-weight[i]]+value[i])
dp[j]=dp[j-weight[i]]+value[i];
}
printf("%d\n",dp[V]);
}
参考文章:https://blog.csdn.net/ZCMU_2024/article/details/81215747
参考文章:https://blog.csdn.net/tinyguyyy/article/details/51203935