利用卷积神经网络处理MNIST

本文转自TensorFlow中文社区

学习构建一个TensorFlow模型的基本步骤,并为 MNIST构建一个深度卷积神经网络。

程序如下:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

sess = tf.InteractiveSession()

#构建一个卷积神经网络
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])


#权重初始化
 #在初始化时应该加入少量的噪声来打破对称性以及避免0梯度
 #由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,
 # 以避免神经元节点输出恒为0的问题;创建函数方便初始化
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

#卷积和池化
 #使用vanilla版本。我们的卷积使用1步长(stride size),0边距(padding size)的模板,
 # 保证输出和输入是同一个大小。我们的池化用简单传统的2x2大小的模板做max pooling。
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

#第一层卷积(卷积层+池化层)
#卷积在每个5x5的patch中算出32个特征。卷积的权重张量形状是[5, 5, 1, 32],
# 前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。
# 而对于每一个输出通道都有一个对应的偏置量。
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
#我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数
# (因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。
x_image = tf.reshape(x, [-1,28,28,1])
#我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#密集连接层
#现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。
# 我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#Dropout 减少过拟合
#我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#输出层(softmax)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#训练和评估模型
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

程序运行结果:

...
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
test accuracy 0.9916

相关知识补充:

1、ReLU

ReLU:f(x)=max(0,x)  

ReLU的有效性体现在两个方面:克服梯度消失的问题,加快训练速度。即使用简单、速度快

2、随机数的生成

tf.truncated_normal与tf.random_normal的区别

生成的值都服从具有指定平均值和标准偏差的正态分布,但前者如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。

3、卷积和池化函数

(1)tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

介绍参数:
input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width, in_channels],分别是[batch张图片, 每张图片高度为in_height, 每张图片宽度为in_width, 图像通道为in_channels]。
filter:指用来做卷积的滤波器,当然滤波器也需要有相应参数,滤波器的shape为[filter_height, filter_width, in_channels, out_channels],分别对应[滤波器高度, 滤波器宽度, 接受图像的通道数, 卷积后通道数],其中第三个参数 in_channels需要与input中的第四个参数 in_channels一致,out_channels第一看的话有些不好理解,如rgb输入三通道图,我们的滤波器的out_channels设为1的话,就是三通道对应值相加,最后输出一个卷积核。
strides:代表步长,其值可以直接默认一个数,也可以是一个四维数如[1,2,1,1],则其意思是水平方向卷积步长为第二个参数2,垂直方向步长为1.其中第一和第四个参数我还不是很明白,请大佬指点,貌似和通道有关系。
padding:代表填充方式,参数只有两种,SAME和VALID,SAME比VALID的填充方式多了一列,比如一个3*3图像用2*2的滤波器进行卷积,当步长设为2的时候,会缺少一列,则进行第二次卷积的时候,VALID发现余下的窗口不足2*2会直接把第三列去掉,SAME则会填充一列,填充值为0。
use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。大概意思是是否使用gpu加速,还没搞太懂。
name:给返回的tensor命名。给输出feature map起名字。

(2)tf.nn.max_pool(value, ksize, strides, padding, name=None)

value:池化的输入,一般池化层接在卷积层的后面,所以输出通常为feature map。feature map依旧是[batch, in_height, in_width, in_channels]这样的参数。
ksize:池化窗口的大小,参数为四维向量,通常取[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1。ps:估计面tf.nn.conv2d中stries的四个取值也有              相同的意思。
stries:步长,同样是一个四维向量。

padding:填充方式同样只有两种不重复了。

4、Dropout

dropout是指在深度学习网络的训练过程中,对于神经单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。dropout在CNN中有效防止过拟合提高效果

dropout率的选择:经过交叉验证,隐含节点dropout率等于0.5的时候效果最好,原因是0.5的时候dropout随机生成的网络结构最多。

其他防止过拟合的方法:提前终止(当验证集上的效果变差的时候)、L1和L2正则化加权、soft weight sharing 

5、 softmax

logistics回归模型在多分类问题上的推广。


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值