Pytorch反向传播中的细节-计算梯度时的默认累加

今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决:

pytorch实现线性回归

先附上试验代码来感受一下:

torch.manual_seed(6)

lr = 0.01   # 学习率
result = []

# 创建训练数据
x = torch.rand(20, 1) * 10
y = 2 * x + (5 + torch.randn(20, 1)) 

# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)

# 这里是迭代过程,为了看pytorch的反向传播计算梯度的细节,我先迭代两次
for iteration in range(2):

    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 反向传播
    loss.backward()
    
    # 这里看一下反向传播计算的梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

上面的代码比较简单,迭代了两次ÿ

  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播是深度学习常用的优化算法,用于计算网络各个参数对损失函数的梯度,从而更新参数以优化模型。在PyTorch反向传播的实现主要涉及两个类:`torch.autograd.Function`和`torch.Tensor`。 首先,每个操作都会创建一个`torch.autograd.Function`对象,该对象负责计算正向传播和反向传播计算图。计算图是表示模型各个操作之间依赖关系的有向无环图。在计算,每个节点表示一个操作,每条边表示操作之间的依赖关系。 其次,每个`torch.Tensor`对象都有一个`grad_fn`属性,该属性指向创建该张量的函数。当执行反向传播,从损失函数节点出发,按照计算的依赖关系,逐步计算每个节点的梯度,并保存在对应张量的`grad`属性。这个过程是自动的,无需手动计算梯度。 下面展示一个简单的例子: ``` import torch # 创建张量并计算损失 x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) y = x ** 2 loss = y.sum() # 反向传播并更新参数 loss.backward() print(x.grad) ``` 在上述代码,我们创建了一个张量`x`,并将其设置为需要计算梯度。然后,我们通过对`x`进行平方操作,得到张量`y`,并将其累加得到损失函数`loss`。接下来,我们执行反向传播自动计算每个节点的梯度,并将结果保存在对应张量的`grad`属性。最后,我们打印出`x`的梯度,即可得到反向传播计算得到的结果。 总之,PyTorch反向传播通过计算正向传播和反向传播计算图来自动计算每个节点的梯度,并且无需手动计算

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值