pytorch梯度累积

文章讲述了在PyTorch中如何通过梯度累加技术来变相增大batch_size,以应对内存限制。这种方法在每个小批次计算梯度后累积,每几个步骤后再更新模型参数。同时提到BN层在大batch_size下的优势和调整BN参数momentum的影响。
摘要由CSDN通过智能技术生成

梯度累加其实是为了变相扩大batch_size,用来解决显存受限问题。

常规训练方式,每次从train_loader读取出一个batch的数据:

for x,y in train_loader:
	pred = model(x)
	loss = criterion(pred, label)
	# 反向传播
	loss.backward()
	# 根据新的梯度更新网络参数
	optimizer.step()
	# 清空以往梯度,通过下面反向传播重新计算梯度
	optimizer.zero_grad()

        pytorch每次forward完都会得到一个用于梯度回传的计算图,pytorch构建的计算图是动态的,其实在每次backward后计算图都会从内存中释放掉,但是梯度不会清空的。所以若不显示的进行optimizer.zero_grad()清空过往梯度这一步操作,backward()的时候就会累加过往梯度。

梯度累加的做法:

accumulation_steps = 4
for i,(x,y) in enumerate(train_loader):
	pred = model(x)
	loss = criterion(pred, label)
	
	# 相当于对累加后的梯度取平均
	loss = loss/accumulation_steps
	# 反向传播
	loss.backward()

	if (i+1) % accumulation_steps == 0:
		# 根据新的梯度更新网络参数
		optimizer.step()
		# 清空以往梯度,通过下面反向传播重新计算梯度
		optimizer.zero_grad()

        代码中设置accumulation_steps = 4,意思就是变相扩大batch_size四倍。因为代码中每隔4次迭代才清空梯度,更新参数。
        至于为啥loss = loss/accumulation_steps,因为梯度累加了四次呀,那就要取平均,除以4。那我每次loss取4,其实就相当于最后将累加后的梯度除4咯。同时,因为累计了4个batch,那学习率也应该扩大4倍,让更新的步子跨大点。

 看网上的帖子有讨论对BN层是否有影响,因为BN的估算阶段(计算batch内均值、方差)是在forward阶段完成的,那真实的batch_size放大4倍效果肯定是比通过梯度累加放大4倍效果好的,毕竟计算真实的大batch_size内的均值、方差肯定更精确。

 还有讨论说通过调低BN参数momentum可以得到更长序列的统计信息,应该意思是能够记忆更久远的统计信息(均值、方差),以逼近真实的扩大batch_size的效果。

参考

pytorch骚操作之梯度累加,变相增大batch size

  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch中的梯度累积是指在训练过程中,将多个小批量数据的梯度进行累加,而不是每次反向传播后自动清零梯度。这个特性可以通过调用`loss.backward()`来实现,但在梯度累积时需要手动将梯度清零。 梯度累积的好处在于可以在内存有限的情况下使用更大的批量大小,从而提高模型的训练效果。另外,梯度累积还能够支持多任务训练,因为在多任务中共享的张量的梯度会自动累加。 具体实现梯度累积的代码示例如下: ``` optimizer.zero_grad() # 将梯度清零 for i, data in enumerate(train_loader): inputs, labels = data # 前向传播 outputs = model(inputs) loss = criterion(outputs, labels) # 反向传播 loss.backward() if (i+1) % accum_steps == 0: # 每经过 accum_steps 个小批量数据进行一次梯度更新 optimizer.step() # 更新参数 optimizer.zero_grad() # 将梯度清零 ``` 在这个示例中,我们在每经过 `accum_steps` 个小批量数据时进行一次参数更新,并在更新之后将梯度清零。这样就实现了梯度累积的效果。需要注意的是,`accum_steps`需要根据具体的情况进行调整,以平衡内存占用和训练效果。 参考资料: PyTorch默认会对梯度进行累加。即,PyTorch会在每一次backward()后进行梯度计算,但是梯度不会自动归零,如果不进行手动归零的话,梯度会不断累加。 梯度累积时,每个batch仍然正常前向传播以及反向传播,但是反向传播之后并不进行梯度清零,因为PyTorch中的backward()执行的是梯度累加的操作,所以当我们调用N次loss.backward()后,这N个batch的梯度都会累加起来。 在PyTorch的设计原理上,利用梯度累加可以在最多保存一张计算图的情况下进行多任务的训练。另外一个理由是在内存不足的情况下,可以叠加多个batch的梯度作为一个大batch进行迭代。由于PyTorch的动态图和autograd机制,设置梯度为0比较复杂。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值