有限元求解相场模型,Cahn—Hilliard 方程(非线性)

目标方程

The given system of equations is the Cahn-Hilliard equation:

∂ φ ∂ t − M c Δ w = f 1 w + r ϵ Δ φ − r f ( φ ) = f 2 \frac{\partial \varphi }{\partial t} - M_c\Delta w = f_1 \\ w + r\epsilon \Delta \varphi - r f(\varphi) = f_2 tφMcΔw=f1w+Δφrf(φ)=f2

where φ ( x , y , t ) \varphi(x,y,t) φ(x,y,t) and w ( x , y , t ) w(x,y,t) w(x,y,t) are the unknown functions, and f 1 ( x , y , t ) f_1(x,y,t) f1(x,y,t), f 2 ( x , y , t ) f_2(x,y,t) f2(x,y,t), M c M_c Mc, r r r, and ϵ \epsilon ϵ are known parameters.

Where φ ( x , y , t ) \varphi(x,y,t) φ(x,y,t) and w ( x , y , t ) w(x,y,t) w(x,y,t) are unknown functions. f 1 ( x , y , t ) f_1(x,y,t) f1(x,y,t), f 2 ( x , y , t ) f_2(x,y,t) f2(x,y,t), M c M_c Mc, r r r, ϵ \epsilon ϵ are known.

Here f ( φ ) = F ′ ( φ ) = 1 ϵ φ ( φ 2 − 1 ) f(\varphi) =F'(\varphi)= \frac{1}{\epsilon}\varphi(\varphi^2-1) f(φ)=F(φ)=ϵ1φ(φ21), F ( φ ) F(\varphi) F(φ) is Double-well potential function.

The space domain is Ω = [ 0 , 1 ] × [ 0 , 1 ] \Omega = [0,1] \times [0,1] Ω=[0,1]×[0,1], and the time domain is T = [ 0 , 1 ] T = [0,1] T=[0,1]

∇ w = ( w x , w y ) Δ w = ∇ ⋅ ∇ w = w x x + w y y ∇ φ = ( φ x , φ y ) Δ φ = ∇ ⋅ ∇ φ = φ x x + φ y y \nabla w = (w_x,w_y) \\ \Delta w =\nabla \cdot \nabla w = w_{xx} + w_{yy}\\ \nabla \varphi = (\varphi_x,\varphi_y)\\ \Delta \varphi =\nabla \cdot \nabla \varphi = \varphi_{xx} + \varphi_{yy} w=(wx,wy)Δw=w=wxx+wyyφ=(φx,φy)Δφ=φ=φxx+φyy

凸分裂(Convex splitting)

For example, Cahn-Hilliard equation is :
u t = ϵ 2 Δ 2 u + Δ f ( u ) u_t = \epsilon ^2\Delta^2u + \Delta f(u) ut=ϵ2Δ2u+Δf(u)
f = F ′ f=F' f=F, and F = 1 4 ( u 2 − 1 ) 2 F=\frac{1}{4} (u^2-1)^2 F=41(u21)2 is a Double-well potential function.\
It also can be writen as energy functional form like:
E ( u ) = ∫ Ω ( ϵ 2 2 ∣ ∇ u ∣ 2 + F ( u ) ) d Ω E(u) = \int_\Omega \left(\frac{\epsilon^2}{2}|\nabla u|^2 + F(u)\right)d\Omega E(u)=Ω(2ϵ2∣∇u2+F(u))dΩ

The convex splitting method is one of the commonly used approaches to construct unconditionally uniquely solvable and energy-stable numerical schemes. It was initially proposed by Eyre [2] in the study of unconditionally energy-stable schemes for the Cahn-Hilliard equation. Subsequently, this method has been extended and successfully applied to various other phase field models. \

The basic idea of the convex splitting method is to decompose the energy functional into the sum of a convex part and a concave part, treat the terms corresponding to the convex part implicitly, and the terms corresponding to the concave part explicitly. The resulting semi-implicit scheme is referred to as the convex splitting scheme.

The energy functional corresponding to the Cahn-Hilliard equation has the following decomposition:\
E ( u ) = ∫ Ω ( ϵ 2 2 ∣ ∇ u ∣ 2 + F + ( u ) ) d Ω − ∫ Ω ( ϵ 2 2 F − ( u ) ) d Ω E(u) = \int_\Omega \left(\frac{\epsilon^2}{2}|\nabla u|^2 + F_{+}(u)\right)d\Omega - \int_\Omega \left(\frac{\epsilon^2}{2} F_{-}(u)\right)d\Omega E(u)=Ω(2ϵ2∣∇u2+F+(u))dΩΩ(2ϵ2F(u))dΩ

where F + ( u ) = 1 4 ( u 4 + 1 ) F_{+}(u) = \frac{1}{4}(u^4+1) F+(u)=41(u4+1) and F − ( u ) = 1 2 u 2 F_{-}(u) = \frac{1}{2}u^2 F(u)=21u2 satisfy F ( u ) = F + ( u ) − F − ( u ) F(u) = F_{+}(u) - F_{-}(u) F(u)=F+(u)F(u).

The first-order convex splitting scheme for the Cahn-Hilliard equation can be written as follows:

u n + 1 − u n Δ t = Δ w n + 1 \frac{u^{n+1} - u^n}{\Delta t} = \Delta w^{n+1} Δtun+1un=Δwn+1

w n + 1 = − ϵ 2 Δ u n + 1 + ( f + ( u n + 1 ) − f − ( u n ) ) w^{n+1} = -\epsilon^2\Delta u^{n+1} + \left( f_{+}(u^{n+1}) - f_{-}(u^n)\right) wn+1=ϵ2Δun+1+(f+(un+1)f(un))
where f + ( u ) = F + ′ ( u ) = u 3 f_{+}(u) = F'_{+}(u) = u^3 f+(u)=F+(u)=u3, f − ( u ) = F − ′ ( u ) = u f_{-}(u) = F'_{-}(u) = u f(u)=F(u)=u, and u n u^n un is the numerical approximation of u ( t n ) u(t_n) u(tn).

弱格式

第一个方程

∂ φ ∂ t − M c Δ w = f 1 \frac{\partial \varphi }{\partial t} - M_c\Delta w = f_1 tφMcΔw=f1

  1. multiply a function a test function v ( x , y ) v(x,y) v(x,y) on both side of the the above equation.
    ∂ φ ∂ t v − ( M c Δ w ) v = f 1 v \frac{\partial \varphi }{\partial t}v - (M_c\Delta w) v = f_1v tφv(McΔw)v=f1v
    ∫ Ω ∂ φ ∂ t v d x d y − ∫ Ω ( M c Δ w ) v d x d y = ∫ Ω f 1 v d x d y \int_\Omega\frac{\partial \varphi }{\partial t}vdxdy - \int_\Omega(M_c\Delta w) vdxdy = \int_\Omega f_1vdxdy ΩtφvdxdyΩ(McΔw)vdxdy=Ωf1vdxdy

    φ ( x , y , t ) \varphi(x,y,t) φ(x,y,t) and w ( x , y , t ) w(x,y,t) w(x,y,t) are called trail function and v ( x , y ) v(x,y) v(x,y) is called a test function.

  2. using Green’s formula (divergence theory, integration by parts in multi-dimension).
    ∫ Ω ( M c Δ w ) v d x d y = ∫ Ω ( M c ∇ ⋅ ∇ w ) v d x d y = ∫ ∂ Ω ( M c ∇ w ⋅ n ⃗ ) v − ∫ Ω M c ∇ w ⋅ ∇ v d x d y \int_\Omega(M_c\Delta w) vdxdy =\int_\Omega(M_c\nabla \cdot \nabla w) vdxdy= \int_{\partial\Omega} (M_c \nabla w \cdot \vec n)v - \int_\Omega M_c\nabla w \cdot \nabla vdxdy Ω(McΔw)vdxdy=Ω(Mcw)vdxdy=Ω(Mcwn )vΩMcwvdxdy
    Assume it is Dirichlet boundary condtion. Then v = 0 v=0 v=0 on ∂ Ω \partial \Omega Ω
    ∫ Ω ∂ φ ∂ t v d x d y + ∫ Ω M c ∇ w ⋅ ∇ v d x d y = ∫ Ω f 1 v d x d y \int_\Omega\frac{\partial \varphi }{\partial t}vdxdy +\int_\Omega M_c\nabla w \cdot \nabla vdxdy = \int_\Omega f_1vdxdy Ωtφvdxdy+ΩMcwvdxdy=Ωf1vdxdy
    ∇ w ⋅ ∇ v = w x v x + w y v y \nabla w \cdot \nabla v = w_xv_x+w_yv_y wv=wxvx+wyvy
    ∫ Ω ∂ φ ∂ t v d x d y + ∫ Ω M c w x v x d x d y + ∫ Ω M c w y v y d x d y = ∫ Ω f 1 v d x d y \int_\Omega\frac{\partial \varphi }{\partial t}vdxdy +\int_\Omega M_c w_xv_xdxdy + \int_\Omega M_c w_yv_ydxdy = \int_\Omega f_1vdxdy Ωtφvdxdy+ΩMcwxvxdxdy+ΩMcwyvydxdy=Ωf1vdxdy

Let ( φ t , v ) = ∫ Ω ∂ φ ∂ t v d x d y (\varphi_t,v) = \int_\Omega\frac{\partial \varphi }{\partial t}vdxdy (φt,v)=Ωtφvdxdy
a 1 ( w , v ) = ∫ Ω M c ∇ w ⋅ ∇ v d x d y a1(w,v) =\int_\Omega M_c\nabla w \cdot \nabla vdxdy a1(w,v)=ΩMcwvdxdy
( f 1 , v ) = ∫ Ω f 1 v d x d y (f1,v) = \int_\Omega f_1vdxdy (f1,v)=Ωf1vdxdy \

H 1 ( 0 , T ; H 1 ( Ω ) ) = { v ( t , ⋅ )   |   ∂ v ∂ t ( t , ⋅ ) ∈ H 1 ( Ω ) ,   ∀ t ∈ [ 0 , T ] } H^1(0, T; H^1(\Omega)) = \left\{ v(t, \cdot) \, \middle| \, \frac{\partial v}{\partial t}(t, \cdot) \in H^1(\Omega), \, \forall t \in [0, T] \right\} H1(0,T;H1(Ω))={v(t,) tv(t,)H1(Ω),t[0,T]}
Weak formulation: find w ∈ H 1 ( 0 , T ; H 1 ( Ω ) ) w\in H^1(0, T; H^1(\Omega)) wH1(0,T;H1(Ω)) and φ ∈ H 1 ( 0 , T ; H 1 ( Ω ) ) \varphi \in H^1(0, T; H^1(\Omega)) φH1(0,T;H1(Ω)), such that \
( φ t , v ) + a 1 ( w , v ) = ( f 1 , v ) (\varphi_t,v) + a1(w,v) = (f1,v) (φt,v)+a1(w,v)=(f1,v)
for any v ∈ H 0 1 ( Ω ) v\in H^1_0(\Omega) vH01(Ω)

第二个方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

半离散

第一个方程

Assume there is a finite dimensional subspace U h = span { ϕ j } j = 1 N b U_h = \text{span}\{\phi_j\}_{j=1}^{N_b} Uh=span{ϕj}j=1Nb,
where { ϕ j } j = 1 N b \{\phi_j\}_{j=1}^{N_b} {ϕj}j=1Nb are the global finite element basis functions.
Then the Galerkin formulation is to find φ h ∈ H 1 ( 0 , T ; U h ) \varphi_{h} \in H^1(0,T;U_h) φhH1(0,T;Uh) and w h ∈ H 1 ( 0 , T ; U h ) w_{h} \in H^1(0,T;U_h) whH1(0,T;Uh)
such that
( φ h t , v h ) + a 1 ( w h , v h ) = ( f 1 , v h ) (\varphi_{h_t},v_h) + a1(w_h,v_h) = (f1,v_h) (φht,vh)+a1(wh,vh)=(f1,vh)
for any v h ∈ U h v_h \in U_h vhUh
It also can be express as:
∫ Ω φ h t v h d x d y + ∫ Ω M c ∇ w h ⋅ ∇ v h d x d y = ∫ Ω f 1 v h d x d y \int_\Omega\varphi_{h_t}v_hdxdy +\int_\Omega M_c\nabla w_h \cdot \nabla v_hdxdy = \int_\Omega f_1v_hdxdy Ωφhtvhdxdy+ΩMcwhvhdxdy=Ωf1vhdxdy
or
∫ Ω φ h t v h d x d y + ∫ Ω M c ( w h ) x ( v h ) x d x d y + ∫ Ω M c ( w h ) y ( v h ) y d x d y = ∫ Ω f 1 v h d x d y \int_\Omega\varphi_{h_t}v_hdxdy+\int_\Omega M_c (w_h)_x(v_h)_xdxdy + \int_\Omega M_c(w_h)_y(v_h)_ydxdy = \int_\Omega f_1v_hdxdy Ωφhtvhdxdy+ΩMc(wh)x(vh)xdxdy+ΩMc(wh)y(vh)ydxdy=Ωf1vhdxdy
Since φ h ∈ H 1 ( 0 , T ; U h ) \varphi_h \in H^1(0,T;U_h) φhH1(0,T;Uh) and w h ∈ H 1 ( 0 , T ; U h ) w_{h} \in H^1(0,T;U_h) whH1(0,T;Uh), and U h = span { ϕ j } j = 1 N b U_h = \text{span}\{\phi_j\}_{j=1}^{N_b} Uh=span{ϕj}j=1Nb, then
φ h ( x , y , t ) = ∑ j = 1 N b φ j ( t ) ϕ j ( x , y ) \varphi_{h}(x,y,t) = \sum_{j=1}^{N_b} \varphi_{j}(t)\phi_j(x,y) φh(x,y,t)=j=1Nbφj(t)ϕj(x,y)

w h ( x , y , t ) = ∑ j = 1 N b w j ( t ) ϕ j ( x , y ) w_{h}(x,y,t) = \sum_{j=1}^{N_b} w_{j}(t)\phi_j(x,y) wh(x,y,t)=j=1Nbwj(t)ϕj(x,y)
for some coefficients φ j ( t ) ( j = 1 , . . . , N b ) \varphi_{j}(t)(j=1,...,N_b) φj(t)(j=1,...,Nb) and w j ( t ) ( j = 1 , . . . , N b ) w_{j}(t)(j=1,...,N_b) wj(t)(j=1,...,Nb).\
We choose V h = ϕ i ( x , y ) ( i = 1 , . . . , N b ) V_h = \phi_i(x,y)(i=1,...,N_b) Vh=ϕi(x,y)(i=1,...,Nb).\
Then we can have
∫ Ω ( ∑ j = 1 N b φ j ( t ) ϕ j ) t ϕ i d x d y + ∫ Ω M c ∇ ( ∑ j = 1 N b w j ( t ) ϕ j ) ⋅ ∇ ϕ i d x d y = ∫ Ω f 1 ϕ i d x d y \int_\Omega\left( \sum_{j=1}^{N_b} \varphi_{j}(t)\phi_j\right)_t\phi_idxdy +\int_\Omega M_c\nabla \left(\sum_{j=1}^{N_b} w_{j}(t)\phi_j\right) \cdot \nabla \phi_i dxdy = \int_\Omega f_1\phi_idxdy Ω(j=1Nbφj(t)ϕj)tϕidxdy+ΩMc(j=1Nbwj(t)ϕj)ϕidxdy=Ωf1ϕidxdy

∫ Ω ( ∑ j = 1 N b φ j ( t ) ϕ j ) t ϕ i d x d y + ∫ Ω M c ∑ j = 1 N b w j ( t ) ∇ ϕ j ⋅ ∇ ϕ i d x d y = ∫ Ω f 1 ϕ i d x d y \int_\Omega( \sum_{j=1}^{N_b} \varphi_{j}(t)\phi_j)_t\phi_idxdy +\int_\Omega M_c \sum_{j=1}^{N_b} w_{j}(t)\nabla \phi_j \cdot \nabla \phi_i dxdy = \int_\Omega f_1\phi_idxdy Ω(j=1Nbφj(t)ϕj)tϕidxdy+ΩMcj=1Nbwj(t)ϕjϕidxdy=Ωf1ϕidxdy

∑ j = 1 N b φ j ′ ( t ) ∫ Ω ϕ j ϕ i d x d y + ∑ j = 1 N b w j ( t ) ∫ Ω M c ∇ ϕ j ⋅ ∇ ϕ i d x d y = ∫ Ω f 1 ϕ i d x d y \sum_{j=1}^{N_b}\varphi'_{j}(t) \int_\Omega\phi_j\phi_idxdy +\sum_{j=1}^{N_b} w_{j}(t)\int_\Omega M_c \nabla \phi_j \cdot \nabla \phi_i dxdy = \int_\Omega f_1\phi_idxdy j=1Nbφj(t)Ωϕjϕidxdy+j=1Nbwj(t)ΩMcϕjϕidxdy=Ωf1ϕidxdy

∑ j = 1 N b φ j ′ ( t ) ∫ Ω ϕ j ϕ i d x d y + ∑ j = 1 N b w j ( t ) ( ∫ Ω M c ∂ ϕ j ∂ x ∂ ϕ i ∂ x d x d y + ∫ Ω M c ∂ ϕ j ∂ y ∂ ϕ i ∂ y d x d y ) = ∫ Ω f 1 ϕ i d x d y \sum_{j=1}^{N_b}\varphi'_{j}(t) \int_\Omega\phi_j\phi_idxdy +\sum_{j=1}^{N_b} w_{j}(t)\left(\int_\Omega M_c \frac{\partial\phi_j}{\partial x}\frac{\partial\phi_i}{\partial x}dxdy +\int_\Omega M_c \frac{\partial\phi_j}{\partial y}\frac{\partial\phi_i}{\partial y}dxdy\right) = \int_\Omega f_1\phi_idxdy j=1Nbφj(t)Ωϕjϕidxdy+j=1Nbwj(t)(ΩMcxϕjxϕidxdy+ΩMcyϕjyϕidxdy)=Ωf1ϕidxdy

Define the stiffness matrix
A 1 = [ ∫ Ω M c ∇ ϕ j ⋅ ∇ ϕ i d x d y ] i , j = 1 N b , N b A_1= \left[\int_\Omega M_c \nabla \phi_j \cdot \nabla \phi_i dxdy\right]_{i,j=1}^{N_b,N_b} A1=[ΩMcϕjϕidxdy]i,j=1Nb,Nb
A 1 = A 11 + A 12 A_1= A_{11} + A_{12} A1=A11+A12
A 11 = [ ∫ Ω M c ∂ ϕ j ∂ x ∂ ϕ i ∂ x d x d y ] i , j = 1 N b , N b A_{11} = \left[\int_\Omega M_c \frac{\partial\phi_j}{\partial x}\frac{\partial\phi_i}{\partial x}dxdy\right]_{i,j=1}^{N_b,N_b} A11=[ΩMcxϕjxϕidxdy]i,j=1Nb,Nb
A 12 = [ ∫ Ω M c ∂ ϕ j ∂ y ∂ ϕ i ∂ y d x d y ] i , j = 1 N b , N b A_{12} = \left[\int_\Omega M_c \frac{\partial\phi_j}{\partial y}\frac{\partial\phi_i}{\partial y}dxdy\right]_{i,j=1}^{N_b,N_b} A12=[ΩMcyϕjyϕidxdy]i,j=1Nb,Nb
Define the mass matrix
M = [ ∫ Ω ϕ j ϕ i d x d y ] i , j = 1 N b , N b M = \left[\int_\Omega\phi_j\phi_idxdy\right]_{i,j=1}^{N_b,N_b} M=[Ωϕjϕidxdy]i,j=1Nb,Nb

Define the load vector
b ⃗ 1 = [ ∫ Ω f 1 ϕ i d x d y ] i = 1 N b \vec b_1 = \left[\int_\Omega f_1\phi_idxdy \right]_{i=1}^{N_b} b 1=[Ωf1ϕidxdy]i=1Nb
Define the unknown vector
X ⃗ 1 = [ φ j ( t ) ] j = 1 N b \vec X_1=\left[\varphi_j(t) \right]_{j=1}^{N_b} X 1=[φj(t)]j=1Nb
X ⃗ 2 = [ w j ( t ) ] j = 1 N b \vec X_2=\left[w_j(t) \right]_{j=1}^{N_b} X 2=[wj(t)]j=1Nb

Then we obtain the system
M X ⃗ 1 ′ ( t ) + A 1 X ⃗ 2 = b ⃗ 1 M\vec X_1'(t) + A_1\vec X_2 = \vec b_1 MX 1(t)+A1X 2=b 1

第二个方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全离散

第一个方程

M X ⃗ 1 ′ ( t ) + A 1 X ⃗ 2 = b ⃗ 1 M\vec X_1'(t) + A_1\vec X_2 = \vec b_1 MX 1(t)+A1X 2=b 1
X ⃗ 1 ′ ( t ) = b 1 − A 1 X ⃗ 2 M \vec X_1'(t) = \frac{b_1 - A_1\vec X_2}{M} X 1(t)=Mb1A1X 2

Assume that we have a uniform partition of [ 0 , T ] [0,T] [0,T] into M m M_m Mm elements with time step Δ t \Delta t Δt.
The mesh nodes are t m = m Δ t , m = 0 , 1 , . . . , M m t_m = m \Delta t, m = 0,1,...,M_m tm=mΔt,m=0,1,...,Mm.
Assume X ⃗ 1 m \vec X_1^{m} X 1m is the numerical solution of X ⃗ 1 ( t m ) \vec X_1(t_m) X 1(tm) and X ⃗ 2 m \vec X_2^{m} X 2m is the numerical solution of X ⃗ 2 ( t m ) \vec X_2(t_m) X 2(tm).

θ \theta θ-scheme (Finite difference (FD) method):
X 1 m + 1 − X 1 m Δ t = θ b 1 m + 1 − A 1 m + 1 X 2 m + 1 M + ( 1 − θ ) b 1 m − A 1 m X 2 m M , m = 0 , 1 , . . . , M m \frac{X_1^{m+1} - X_1^{m}}{\Delta t} = \theta\frac{b_1^{m+1} - A_1^{m+1}X_2^{m+1}}{M} + (1-\theta)\frac{b_1^{m} - A_1^{m}X_2^{m}}{M}, m = 0,1,...,M_m ΔtX1m+1X1m=θMb1m+1A1m+1X2m+1+(1θ)Mb1mA1mX2m,m=0,1,...,Mm
where:
θ = 0 \theta = 0 θ=0: forward Euler scheme;
θ = 1 \theta = 1 θ=1: backward Euler scheme;
θ = 1 / 2 \theta =1/2 θ=1/2: Crank-Nicolson scheme.

第二个方程

在这里插入图片描述

牛顿迭代

在这里插入图片描述
在这里插入图片描述

牛顿线性化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果

在这里插入图片描述

syms x y t;

% parameters
Mc=1;
r=1;
eplson=1;


u= exp(x+y+t);
w=x*y*(1-x/2)*(1-y)*exp(x+y+t);



ut = diff(u,t);
% compute the Laplacian op
lap_w = laplacian(w, [x, y]);

f1 = ut-Mc*lap_w;

Lap_u=laplacian(u,[x,y]);
fu=1/eplson * u *(u^2-1);
f2 = w+r*eplson*Lap_u-r*fu;

% function f1 f2
fun_f1 = matlabFunction(f1, 'Vars', [x, y,t])

fun_f2 = matlabFunction(f2, 'Vars', [x, y,t])



wx=diff(w,x);
wy=diff(w,y);
% function of derivative 
fun_w_analytic_der_x = matlabFunction(wx, 'Vars', [x, y,t])
fun_w_analytic_der_y = matlabFunction(wy, 'Vars', [x, y,t])

ux=diff(u,x);
uy=diff(u,y);

在这里插入图片描述
在这里插入图片描述

误差分析 可以看文章

误差 收敛阶分析

这里使用的相场模型的 凸分裂格式 可以看文章:
相场方程的高效数值算法

  • 23
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值